Cho a>1 ,b>1.CM \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge0\) (Áp dụng bất đẳng thức Cô-si)
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Coi như a, b, c là số dương
Áp dụng BĐT Cô-si ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)
Dấu "=" xảy ra ...
\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)
Dấu "=" xảy ra ...
\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)
Dấu "=" xảy ra ...
Từ (1), (2), (3) ta có:
\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Dấu "=" xảy ra ...
Vậy ...
a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được
Sử dụng bất đẳng thức cô-si. Chứng minh bất đẳng thức \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
Lời giải:
Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:
$a+b\geq 2\sqrt{ab}$
$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$
$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$
Ta có đpcm
Dấu "=" xảy ra khi $a=b$
CM: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) với a, b > 0.
...
Làm ơn ạ, lớp 8 chưa học bất đẳng thức Cô-si =(((
BĐT cần chứng minh tương đương:
\(\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng bất đẳng thức Cô-si ta có:
\((a+b)\ge 2\sqrt{ab}\)
\(\left(\dfrac1a+\dfrac1b\right)\ge 2\sqrt{\dfrac1{ab}}\)
\(\Rightarrow (a+b)\left(\dfrac1a+\dfrac1b\right) \ge 2\sqrt{ab}2\sqrt{\dfrac1{ab}}=4\) (đpcm)
Dấu \("="\) xảy ra khi \(a=b\)
Áp dụng BĐT với hai số dương ta có:
`a+b>=2sqrt{ab}`
`1/a+1/b>=2/sqrt{ab}`
`=>(a+b)(1/a+1/b)>=2sqrt{ab}. 2/sqrt{ab}=4`
Dấu "=" xảy ra khi `a=b>0`
cho a,b >0. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
sử dụng bất đẳng thức Cô- si nha1!
Áp dụng bất đẳng thức cô - si ta có:
\(a+b\ge2\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)
Nhân từng vế của 2 bất đẳng thức trên ta được \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Vậy...
Chứng minh: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
\(\Rightarrow2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)
\(\Rightarrow2+\dfrac{a}{b}+\dfrac{b}{a}\ge2+2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2+2=4\)
\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
Chứng minh bất đẳng thức Cô-si
Bất đẳng thức Cô-si cho hai số là:
\(\dfrac{a+b}{2}\) ≥\(\sqrt{ab}\) , a≥0 , b≥0
Giúp với mai mink thi rồi
Ta có : \(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2+2ab\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
Có : \(a,b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )
Vậy ...
Chứng minh bất đẳng thức cô-si với 3 số a,b,c không âm: \(\dfrac{a+b+c}{3}\ge\sqrt[3]{abc}\). Dấu đẳng thức xảy ra khi a=b=c.
Áp dụng chứng minh bất đẳng thức: \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Bạn tham khảo cách chứng minh tại đây :
Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến
Áp dụng : Theo BĐT \(AM-GM\) ta có :
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân vế theo vế ta được :
\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)
Dấu \("="\) xảy ra khi \(a=b=c\)
tìm giá trị nhỏ nhất. áp dụng bất đẳng thức cô-si
\(\dfrac{x^2}{x+3}\) ;\(\dfrac{x^2}{x-2}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
Giả sử có thêm điều kiện tương ứng (lần lượt là x>-3 và x>2)
Đặt \(A=\dfrac{x^2}{x+3}=\dfrac{x^2-9+9}{x+3}=\dfrac{\left(x-3\right)\left(x+3\right)+9}{x+3}=x-3+\dfrac{9}{x+3}\)
\(A=x+3+\dfrac{9}{x+3}-6\ge2\sqrt{\dfrac{9\left(x+3\right)}{x+3}}-6=0\)
\(A_{min}=0\) khi \(x+3=\dfrac{9}{x+3}\Rightarrow x=0\)
Đặt \(B=\dfrac{x^2}{x-2}=\dfrac{x^2-4+4}{x-2}=\dfrac{\left(x-2\right)\left(x+2\right)+4}{x-2}=x+2+\dfrac{4}{x-2}\)
\(B=x-2+\dfrac{4}{x-2}+4\ge2\sqrt{\dfrac{4\left(x-2\right)}{x-2}}+4=8\)
\(B_{min}=8\) khi \(x-2=\dfrac{4}{x-2}\Rightarrow x=4\)
SỬ DỤNG BẤT ĐẲNG THỨC BUNHIACOPXKI
Cho a,b,c>0 thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{a^2+b^2+c^2}\)
MN giúp e với
\(P=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{\left(1+1+1\right)^2}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\) (BĐT Cauchy Schwarz)
\(=\dfrac{9}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}\)
\(=\dfrac{1}{ab+bc+ca}+\dfrac{1}{ab+bc+ca}+\dfrac{1}{a^2+b^2+c^2}+\dfrac{7}{ab+bc+ca}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2ac+2bc}+\dfrac{7}{ab+bc+ca}\)
\(=\dfrac{9}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ca}\)
Ta có: \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\) .Thế vào biểu thức
\(\Rightarrow P\ge9+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)
\(\Rightarrow P_{min}=30\) khi \(a=b=c=\dfrac{1}{3}\)
áp dụng bất đẳng thức Cô-si,tìm GTNN của P= \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+a\right)\left(1+c\right)}+\dfrac{c^3}{\left(1+b\right)\left(1+a\right)}\)
Bài này mình từng giải rồi. Đề đúng phải là:
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.
Tìm GTNN của \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Bài giải:
Ta có: \(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{1+b}{8}+\dfrac{1+c}{8}\ge\dfrac{3a}{4}\)
\(\Leftrightarrow\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\dfrac{6a-b-c-2}{8}\left(1\right)\)
Tương tự \(\left\{{}\begin{matrix}\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\dfrac{6b-c-a-2}{8}\left(2\right)\\\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6c-a-b-2}{8}\left(3\right)\end{matrix}\right.\)
Cộng (1), (2), (3) vế theo vế ta được:
\(\dfrac{a^3}{\left(1+b\right)\left(1+c\right)}+\dfrac{b^3}{\left(1+c\right)\left(1+a\right)}+\dfrac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\dfrac{6a-b-c-2}{8}+\dfrac{6b-c-a-2}{8}+\dfrac{6c-a-b-2}{8}\)
\(=\dfrac{a+b+c}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{abc}}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
Dấu = xảy ra khi \(a=b=c=1\)
PS: Chép đề thì cẩn thận vô bạn.
1 cach giai khac cho Cosi va C-S Câu hỏi của Hoàng Phúc - Toán lớp 8 - Học toán với OnlineMath