Đề có bị sai không bạn theo mình thì phải là \(\ge8\) mới đúng
Áp dụng bất đẳng thức cô si cho hai số thực không âm ta có :
\(\dfrac{a^2}{b-1}+4\left(b-1\right)\ge2\sqrt{\dfrac{a^2}{b-1}\times4\left(b-1\right)}=4a\) (1)
\(\dfrac{b^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\dfrac{b^2}{a-1}\times4\left(a-1\right)}=4b\) (2)
Cộng (1) và (2) vế theo vế ,ta được :
\(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}+4a+4b-8\ge4a+4b\)
\(\Rightarrow\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\)
Dấu "="xảy ra khi:a=b=2
Vậy \(\dfrac{a^2}{b-1}+\dfrac{b^2}{a-1}\ge8\) với a>1,b>1