Cho tam giác ABC; AB = c; AC = b; BC = a; đường phân giác AD. Chứng minh:
1) \(\sin\dfrac{A}{2}\le\dfrac{a}{b+c}\)
2) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{S}< 2\)
3) \(\dfrac{1}{\sin\dfrac{A}{2}}+\dfrac{1}{\sin\dfrac{B}{2}}+\dfrac{1}{\sin\dfrac{C}{2}}\ge6\)
4) \(\sin\dfrac{A}{2}+\sin\dfrac{B}{2}+\sin\dfrac{C}{2}\le\dfrac{1}{8}\)
5) \(\dfrac{1}{\sin^2\dfrac{A}{2}}+\dfrac{1}{\sin^2\dfrac{B}{2}}+\dfrac{1}{\sin^2\dfrac{C}{2}}\ge12\)
1)
Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM