Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vuong hien duc
Xem chi tiết
Nguyễn Quang Hải
6 tháng 6 2018 lúc 9:25

Chắc đè trên bạn ghi nhầm là:

\(a.c+b^2-2.x^4.y^4=0\)

Ta có \(b=x^2.y^2\)

=> \(b^2=\left(x^2.y^2\right)^2=x^4.y^4\) (1)

Từ (1)

=>\(a.c+b^2-2.x^4.y^4\)

\(=\left(x^3.y\right).\left(x.y^3\right)+b^2-2.b^2\)

\(=\left(x^3.x\right).\left(y.y^3\right)+b^2-2.b^2\)

\(=x^4.y^4+b^2-2.b^2\)

\(=b^2+b^2-2.b^2\)

\(=2.b^2-2b^2\)

\(=0\)

=>\(a.c+b^2-2.x^4.y^4=0\)\(\left(đpcm\right)\)

Vậy nếu \(a=x^3.y;b=x^2.y^2;c=x.y^3\)thì với mọi số hữu tỉ x:y ta cũng có: \(a.c+b^2-2.x^4.y^4=0\)

Ác Quỷ Bóng Đêm
Xem chi tiết
Hoàng Lê Bảo Ngọc
10 tháng 8 2016 lúc 6:52

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

vuong hien duc
Xem chi tiết
đàm anh quân lê
18 tháng 5 2018 lúc 21:24

Bài lớp 7 chứ lớp 6 mần chi đã học số hữu tỉ

Ác Quỷ Bóng Đêm
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 17:15

Cho các số thực không âm a,b,c. Chứng minh rằng:

Quyết Trần Đình
Xem chi tiết
Bình
Xem chi tiết
nguyenthihoaithuong
Xem chi tiết
Lê Minh Anh
8 tháng 9 2016 lúc 18:23

 \(\left(a+b+c\right)^3=\left[\left(a+b\right)+c\right]^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)

\(=\left(a^3+3a^2b+3b^2a+b^3\right)+3c\left(a^2+2ab+b^2\right)+3c^2\left(a+b\right)+c^3\)

\(=a^3+3a^2b+3b^2a+b^3+3a^2c+6abc+3b^2c+3ac^2+3bc^2+c^3\)

\(=a^3+b^3+c^3+\left(3a^2b+3b^2a+3b^2c+3c^2b+3a^2c+3c^2a+6abc\right)\)

\(=a^3+b^3+c^3+3\left(a^2b+b^2a+b^2c+c^2b+a^2c+c^2a+2abc\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

phạm thị như quỳnh
Xem chi tiết
nub
Xem chi tiết
tth_new
31 tháng 5 2020 lúc 18:37

Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)

Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)

Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:

Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:

\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)

Đây là điều hiển nhiên.

Khách vãng lai đã xóa