Cho các số thực không âm a,b,c. Chứng minh rằng:
Cho các số thực không âm a,b,c. Chứng minh rằng:
Bài 1: cho \(a,b,c\ge0\) và a+b+c=1. Chứng minh rằng :
a,\(\left(1-a\right)\cdot\left(1-b\right)\cdot\left(1-c\right)\ge8\cdot a\cdot b\cdot c\)
b,\(16\cdot a\cdot b\cdot c\ge a+b\)
c,\(\frac{a}{1+a}+\frac{2\cdot b}{2+b}+\frac{3\cdot c}{3+c}\le\frac{6}{7}\)
Bài 2: cho a,b,c>0 và a.b.c=0 chứng minh rằng:
\(\frac{b\cdot c}{a^2\cdot b+a^2\cdot c}+\frac{a\cdot c}{b^2\cdot c+b^2\cdot a}+\frac{a\cdot b}{c^2\cdot a+c^2\cdot b}\ge\frac{3}{2}\)
Cho a,b,c>0 và \(a+b+c\le1\) .Chứng minh rằng:
\(\frac{1}{a^2+2\cdot b\cdot c}+\frac{1}{b^2+2\cdot a\cdot c}+\frac{1}{c^2+2\cdot a\cdot b}\)
Bài 1 rút gon biểu thức
a,\(\sqrt{72}-3\sqrt{48}-5\sqrt{8}+4\sqrt{27}\)
b,\(\sqrt{2+\sqrt{3}}\cdot\sqrt{2-\sqrt{3}}\)
cho a,b khác 0 thỏa mãn a+b
a, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(a\cdot b-2\right)}{a^2\cdot b^2+3}\)
b, \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\cdot\left(b-a\right)}{a^2\cdot b^2+3}\)
Phân tích đa thức sau thành nhân tử:
a) \(8\cdot\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z-x\right)^3\)
b) \(\left[4abcd+\left(a^2+b^2\right)\cdot\left(c^2+d^2\right)\right]^2-4\cdot\left[cd\cdot\left(a^2+b^2\right)+ab\cdot\left(c^2+d^2\right)\right]^2\)
Các bạn giúp mk giải bài tập này nhá.mk cảm ơn nhìu
Cho a, b, c > 0 chứng minh rằng:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}>=2\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)với \(p=\frac{a+b+c}{2}\)
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
Cho các số thực a,b,c đôi một khác nhau thỏa mãn \(\left(a-b\right)\sqrt[3]{1-c^3}+\left(b-c\right)\sqrt[3]{1-a^3}+\left(c-a\right)\sqrt[3]{1-b^3}=0\)
Chứng minh rằng \(\sqrt[3]{\left(1-a^3\right)\left(1-b^3\right)\left(1-c^3\right)}+abc=1\)
Cho tam giác ABC có AB<AC, D là 1 điểm nằm giữa A và C. Chứng minh rằng: góc ABD = góc ACB \(\Leftrightarrow\) \(AB^2=AC\cdot AD\)