Ôn tập toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ác Quỷ Bóng Đêm

Cho a,b,c>0 và \(a+b+c\le1\) .Chứng minh rằng:

\(\frac{1}{a^2+2\cdot b\cdot c}+\frac{1}{b^2+2\cdot a\cdot c}+\frac{1}{c^2+2\cdot a\cdot b}\)

Hoàng Lê Bảo Ngọc
17 tháng 8 2016 lúc 21:18

Đề đúng : Cho a,b,c > 0 và \(a+b+c\le1\)

CMR : \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)

Đặt \(x=a^2+2bc,y=b^2+2ac,z=c^2+2ab\)

Áp dụng bđt Bunhiacopxki , ta có: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(\sqrt{\frac{1}{x}.x}+\sqrt{\frac{1}{y}.y}+\sqrt{\frac{1}{z}.z}\right)^2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) hay \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{9}{\left(a+b+c\right)^2}\ge9\) 

 

Lightning Farron
17 tháng 8 2016 lúc 21:38

Ta thấy: \(\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)=\left(a+b+c\right)^2\le1\)

Sử dụng Cosi 3 số ta suy ra

\(VT\ge\left[\left(a^2+2bc\right)+\left(b^2+2ac\right)+\left(c^2+2ab\right)\right]\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\right)\)

\(\ge3\sqrt[3]{\left(a^2+2bc\right)\left(b^2+2ac\right)\left(c^2+2ab\right)}\cdot3\sqrt[3]{\frac{1}{a^2+2bc}\cdot\frac{1}{b^2+2ac}\cdot\frac{1}{c^2+2ab}}=9\) (Đpcm)

Đẳng thức xảy ra khi\(\begin{cases}a+b+c=1\\a^2+2bc=b^2+2ac=c^2+2ab\end{cases}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\)

Trần Hà Phương
17 tháng 8 2016 lúc 21:04

mk tìm  đc gtln

Đặt a+b=x b+c=y c+a=z

BDT cần cm ⇔(x+y)(y+z)(z+x)xyz (vì a+b+c=1)

Đến đây cô si bình thường ra min bằng 8

Hoàng Phúc
17 tháng 8 2016 lúc 21:07

bn thêm VP của bđt vào đi,đề thiếu ko làm đc

Lightning Farron
17 tháng 8 2016 lúc 21:11

chứng minh cái j v bn ==

Ác Quỷ Bóng Đêm
17 tháng 8 2016 lúc 21:40

phần cuối đề mk viết thiếu là \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9\)


Các câu hỏi tương tự
Ác Quỷ Bóng Đêm
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Nguyễn Duy Lộc
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Ác Quỷ Bóng Đêm
Xem chi tiết
Thu Hà Lê
Xem chi tiết
Hoàng Nguyễn Quỳnh Khanh
Xem chi tiết
Huỳnh Giang
Xem chi tiết
Nguyễn Thị Thu HƯƠNG
Xem chi tiết