\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2.(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))
Ta có:
\(\frac{1}{p-a}\)= \(\frac{1}{\frac{a+b+c}{2}-a}\)=\(\frac{2}{b+c-a}\)
\(\frac{1}{p-b}\)=\(\frac{1}{\frac{a+b+c}{2}-b}\)=\(\frac{2}{a+c-b}\)
\(\frac{1}{p-c}\)=\(\frac{1}{\frac{a+b+c}{2}-c}\)=\(\frac{2}{a+b-c}\)
Vì a,b,c>0 ta có dụng BĐT sau:\(\frac{1}{x}\)+\(\frac{1}{y}\)\(\ge\)\(\frac{4}{x+y}\)
\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{b+c-a+a+c-b}\)=\(\frac{8}{2c}\)=\(\frac{4}{c}\)
\(\frac{2}{b+c-a}\)+\(\frac{2}{a+b-c}\)\(\ge\)\(\frac{2.4}{b+c-a+a+b-c}\)=\(\frac{8}{2b}\)=\(\frac{4}{b}\)
\(\frac{2}{a+b-c}\)+\(\frac{2}{a+c-b}\)\(\ge\)\(\frac{2.4}{a+b-c+a+c-b}\)=\(\frac{8}{2a}\)=\(\frac{4}{a}\)
Cộng vế với vế của (1);(2) và(3) ta co:
\(\frac{4}{b+c-a}\)+\(\frac{4}{a+c-b}\)+\(\frac{4}{a+b-c}\)\(\ge\)\(\frac{4}{c}\)+\(\frac{4}{b}\)+\(\frac{4}{a}\)
\(\frac{2}{b+c-a}\)+\(\frac{2}{a+c-b}\)+\(\frac{2}{a+b-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))
Vậy\(\frac{1}{p-a}\)+\(\frac{1}{p-b}\)+\(\frac{1}{p-c}\)\(\ge\)2(\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\))
dấu = xảy ra khi a=b=c