Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:30

\(\sqrt{2-f\left(x\right)}=f\left(x\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)\ge0\\f^2\left(x\right)+f\left(x\right)-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\f\left(x\right)=-2< 0\left(loại\right)\end{matrix}\right.\) 

\(\Rightarrow f\left(1\right)=f\left(2\right)=f\left(3\right)=1\)

\(\sqrt{2g\left(x\right)-1}+\sqrt[3]{3g\left(x\right)-2}=2.g\left(x\right)\)

\(VT=1.\sqrt{2g\left(x\right)-1}+1.1\sqrt[3]{3g\left(x\right)-2}\)

\(VT\le\dfrac{1}{2}\left(1+2g\left(x\right)-1\right)+\dfrac{1}{3}\left(1+1+3g\left(x\right)-2\right)\)

\(\Leftrightarrow VT\le2g\left(x\right)\)

Dấu "=" xảy ra khi và chỉ khi \(g\left(x\right)=1\)

\(\Rightarrow g\left(0\right)=g\left(3\right)=g\left(4\right)=g\left(5\right)=1\)

Để các căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)-1\ge0\\g\left(x\right)-1\ge0\end{matrix}\right.\)

Ta có:

\(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)-f\left(x\right)-g\left(x\right)+1=0\)

\(\Leftrightarrow\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+\left[f\left(x\right)-1\right]\left[g\left(x\right)-1\right]=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(x\right)=1\\g\left(x\right)=1\end{matrix}\right.\) \(\Leftrightarrow x=3\)

Vậy tập nghiệm của pt đã cho có đúng 1 phần tử

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:40

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)

\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)

Giải phương trình: \(\sqrt {2{x^2} - 3}  = x - 1\)

\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x =  - 1 + \sqrt 5 }\\{x =  - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)

Ta thấy \(x =  - 1 + \sqrt 5 \) thỏa mãn.

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)

Chọn C.

Thương Thương
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2020 lúc 13:58

\(\Leftrightarrow x^2-4x+5+3\sqrt{x^2-4x+5}-2=0\)

Đặt \(\sqrt{x^2-4x+5}=t>0\)

\(\Rightarrow t^2+3t-2=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{-3+\sqrt{17}}{2}\\t=\dfrac{-3-\sqrt{17}}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow x^2-4x+5=\dfrac{13-3\sqrt{17}}{2}\)

\(\Leftrightarrow x^2-4x+\dfrac{-3+3\sqrt{17}}{2}=0\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4^2-2\left(\dfrac{-3+3\sqrt{17}}{2}\right)=19-3\sqrt{17}\)

Kinder
Xem chi tiết
Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
18 tháng 9 2015 lúc 11:38

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

Toi da tro lai va te hai...
Xem chi tiết
🖤🤞ⅩDⅩⅩ 🌹💕2k10
26 tháng 10 2021 lúc 22:07

đây mà là toán lp 2 á đùa tôi đấy à

Khách vãng lai đã xóa
Ngọc Anh Đinh
Xem chi tiết
Lightning Farron
6 tháng 1 2017 lúc 12:28

Đk:\(x\ge-\frac{1}{4}\)

\(pt\Leftrightarrow\sqrt{\left(4x+1\right)^2}=\left(\left|x-5\right|\right)^2\)

\(\Leftrightarrow4x+1=x^2-10x+25\)

\(\Leftrightarrow-x^2+14x-24=0\)

\(\Leftrightarrow-\left(x^2-14x+24\right)=0\)

\(\Leftrightarrow-\left(x^2-2x-12x+24\right)=0\)

\(\Leftrightarrow-\left[x\left(x-2\right)-12\left(x-2\right)\right]=0\)

\(\Leftrightarrow-\left(x-12\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}-\left(x-12\right)=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=12\\x=2\end{matrix}\right.\) (thỏa mãn)

Vậy tập nghiệm của pt là \(S=\left\{12;2\right\}\)

Tú Thanh Hà
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
3 tháng 2 2021 lúc 22:07

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

Đào Thu Hiền
3 tháng 2 2021 lúc 22:47

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

Akai Haruma
4 tháng 2 2021 lúc 1:17

Bài 1:

ĐKĐB suy ra $x(x+1)+y(y+1)=3x^2+xy-4x+2y+2$

$\Leftrightarrow 2x^2+x(y-5)+(y-y^2+2)=0$

Coi đây là PT bậc 2 ẩn $x$

$\Delta=(y-5)^2-4(y-y^2+2)=(3y-3)^2$Do đó:

$x=\frac{y+1}{2}$ hoặc $x=2-y$. Thay vào một trong 2 phương trình ban đầu ta thu được:

$(x,y)=(\frac{-4}{5}, \frac{-13}{5}); (1,1)$

Phạm Ngọc Thảo Quyên
Xem chi tiết
☆MĭηɦღAηɦ❄
13 tháng 2 2020 lúc 20:27

\(-4x+7=-1\)

\(\Leftrightarrow-4x=-8\)

\(\Leftrightarrow x=2\)

Vậy phương trình có tập nghiệm \(S=\left\{2\right\}\)

\(\frac{\left(3x+2\right)\left(x+2\right)}{2}-\frac{3}{2}\left(x+1\right)^2=\frac{x-1}{2}\)

\(\Leftrightarrow3x^2+2x+6x+4-3\left(x^2+2x+1\right)=x-1\)

\(\Leftrightarrow3x^2+2x+6x+4-3x^2-6x-3-x+1=0\)

\(\Leftrightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy pt đã cho có nghiệm \(x=-2\)

Khách vãng lai đã xóa
PTN (Toán Học)
13 tháng 2 2020 lúc 20:32

Trl 

-Bạn đó làm đúng rồi nhé ~!

Hok tốt 

nhé bạn

Khách vãng lai đã xóa