Phương trình \(\sqrt{2-f\left(x\right)}=f\left(x\right)\) có tập nghiệm A = {1;2;3}. Phương trình \(\sqrt{2.g\left(x\right)-1}+\sqrt[3]{3.g\left(x\right)-2}=2.g\left(x\right)\) có tập nghiệm là B = {0;3;4;5} . Hỏi tập nghiệm của phương trình \(\sqrt{f\left(x\right)-1}+\sqrt{g\left(x\right)-1}+f\left(x\right).g\left(x\right)+1=f\left(x\right)+g\left(x\right)\)
có bao nhiêu phần tử?
A.1
B.4 C.6 D.7
Giải phương trình: \(\left(8-\sqrt{5x-x^2}\right)\cdot\left(\sqrt{x}-\sqrt{5-x}\right)=4x-10\)
Tìm m để phương trình có nghiệm :
\(\left(\sqrt{x-1}-m\right).\left(\sqrt{x}+m\right)+m^2=2\sqrt[4]{x\left(x-1\right)}+1\)
có bao nhiêu giá trị nguyên của tham số m trên đoạn \([-2020;2020]\) để phương trình \(\left|\sqrt{4x^2-12x+10}-\sqrt{4x^2+20x+74}\right|=m\) có nghiệm
Giải phương trình: \(\left(\sqrt{4x^4-12x^3+9x^2+16}-2x^2+3x\right)\left(\sqrt{x+3}+\sqrt{x-1}\right)=8\)
Cho phương trinh
\(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=a\)
a) Giải phương trình với a=3
b) Tìm a để phương trình có nghiệm
Biết \(\sqrt{3x-x^2}\) +\(\sqrt{x^2-6x=13}\) =\(\sqrt{\left(x-1\right)\left(5-x\right)}\)(1) là phương trình hệ quả của phương trình \(\sqrt{m-x}\) =\(\sqrt{x+1}\) +\(\sqrt{4-x}\). Tìm m.
A.m=1 B.m=12 C.m=9 D.Không tồn tại m.
a) Cho hai số thực a và b thỏa a-b=2. Tích a và b đạt Min bằng bao nhiêu
b) Có bao nhiêu giá trị nguyên của x thuộc [-2;5] thỏa mãn phương trình x2(x-1) \(\ge0\)
c) Bất pt \(\left|4x+3\right|-\left|x-1\right|< x\) có tập nghiệm S=(a;b). Tính giá trị biểu thức P=2a-4b
d) Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \(x^2-2mx+2\left|x-m\right|+2>0\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)