Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
5 tháng 1 2021 lúc 17:22

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

Hồng Phúc
5 tháng 1 2021 lúc 17:33

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

Linh Khánh
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2023 lúc 22:56

\(\Delta'=\left(m-2\right)^2-3\left(m-2\right)=\left(m-2\right)\left(m-5\right)\)

a.

Phương trình có nghiệm kép khi:

\(\left\{{}\begin{matrix}a=m-2\ne0\\\Delta'=\left(m-2\right)\left(m-5\right)=0\end{matrix}\right.\) \(\Rightarrow m=5\)

b.

Phương trình có 2 nghiệm pb khi: 

\(\left\{{}\begin{matrix}m-2\ne0\\\left(m-2\right)\left(m-5\right)>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>5\\m< 2\end{matrix}\right.\)

c.

- Với \(m=2\) pt vô nghiệm

- Với \(m\ne2\) pt có nghiệm khi: \(\left(m-2\right)\left(m-5\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}m\ge5\\m< 2\end{matrix}\right.\)

d.

Pt vô nghiệm khi: \(\left[{}\begin{matrix}m=2\\\left(m-2\right)\left(m-5\right)< 0\end{matrix}\right.\)

\(\Rightarrow2\le m< 5\)

trần lê tuyết mai
Xem chi tiết

a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m=4m^2-4m+4\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-2\left(m-1\right)\right]}{1}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=-\dfrac{m}{1}=-m\end{matrix}\right.\)

\(x_1+x_2+2x_1x_2=2m-2+\left(-2m\right)=-2\)

=>\(x_1+x_2+2\cdot x_1\cdot x_2\) là hệ thức không phụ thuộc vào m

b: Để phương trình có đúng 1 nghiệm âm thì nghiệm còn lại sẽ lớn hơn hoặc bằng 0

=>a*c<=0

=>1*(-m)<=0

=>-m<=0

=>m>=0

c: Để \(\left\{{}\begin{matrix}\left|x_1\right|=\left|x_2\right|\\x_1\cdot x_2< 0\end{matrix}\right.\) thì \(x_1=-x_2\)

=>\(x_1+x_2=0\)

=>2(m-1)=0

=>m-1=0

=>m=1

d: \(\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m-2\right)^2-4\cdot1\left(-m\right)}\)

\(=\sqrt{4m^2-8m+4+4m}\)

\(=\sqrt{4m^2-4m+4}\)

\(=\sqrt{\left(2m-1\right)^2+3}>=\sqrt{3}\forall m\)

Dấu '=' xảy ra khi 2m-1=0

=>\(m=\dfrac{1}{2}\)

Nott mee
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 10:04

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

Thanh Trúc
Xem chi tiết
Nguyễn Huy Tú
20 tháng 4 2021 lúc 16:07

a thay vào mà tính, dễ rồi nên mình ko làm nữa nhé

b, Để phương trình  có 2 nghiệm phân biệt thì delta > 0 

hay \(4m^2-4\left(m-2\right)\left(m-4\right)=4m^2-4\left(m^2-6m+8\right)=6m-8>0\)

\(\Leftrightarrow-8>-6m\Leftrightarrow m>\dfrac{4}{3}\)

c, Theo Vi et ta có : \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{2m}{m-4}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-2}{m-4}\end{matrix}\right.\)

Lại có: \(\left(x_1+x_2\right)^2=\dfrac{4m^2}{\left(m-4\right)^2}\Rightarrow x_1^2+x_2^2=\dfrac{4m^2}{\left(m-4\right)^2}-2x_1x_2\)

\(=\dfrac{4m^2}{\left(m-4\right)^2}-\dfrac{2m-4}{m-4}=\dfrac{4m^2-\left(2m-4\right)\left(m-4\right)}{\left(m-4\right)^2}\)

\(=\dfrac{4m^2-2m^2+12m-16}{\left(m-4\right)^2}=\dfrac{2m^2+12m-16}{\left(m-4\right)^2}\)

ngan kim
Xem chi tiết
Kiều Vũ Linh
22 tháng 1 lúc 7:23

a) ∆' = [-(m - 3)]² - (m² + 3)

= m² - 6m + 9 - m² - 3

= -6m + 6

Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0

⇔ -6m + 6 ≥ 0

⇔ 6m ≤ 6

⇔ m ≤ 1

Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm

b) Theo định lý Viét, ta có:

x₁ + x₂ = 2(m - 3) = 2m - 6

x₁x₂ = m² + 3

Ta có:

(x₁ - x₂)² - 5x₁x₂ = 4

⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4

⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4

⇔ (x₁ + x₂)² - 9x₁x₂ = 4

⇔ (2m - 6)² - 9(m² + 3) = 4

⇔ 4m² - 24m + 36 - 9m² - 27 = 4

⇔ -5m² - 24m + 9 = 4

⇔ 5m² + 24m - 5 = 0

⇔ 5m² + 25m - m - 5 = 0

⇔ (5m² + 25m) - (m + 5) = 0

⇔ 5m(m + 5) - (m + 5) = 0

⇔ (m + 5)(5m - 1) = 0

⇔ m + 5 = 0 hoặc 5m - 1 = 0

*) m + 5 = 0

⇔ m = -5 (nhận)

*) 5m - 1 = 0

⇔ m = 1/5 (nhận)

Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu

a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)

\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)

\(=4m^2-24m+36-4m^2-12=-24m+24\)

Để phương trình có hai nghiệm thì \(\Delta>=0\)

=>-24m+24>=0

=>-24m>=-24

=>m<=1

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2-5x_1x_2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)

=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)

=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)

=>\(4m^2-24m+36-9m^2-27-4=0\)

=>\(-5m^2-24m+5=0\)

=>\(-5m^2-25m+m+5=0\)

=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)

=>(m+5)(-5m+1)=0

=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)

Trần T.Anh
Xem chi tiết
Phan Bá Quân
Xem chi tiết
tường anh nguyễn
Xem chi tiết