Giải phương trình: \(sin3x-cos3x+sinx+cosx=\dfrac{1}{sin3x+cosx}-\dfrac{1}{cos3x-sinx}\)
Giải phương trình sin3x(cosx - 2sin3x) + cos3x(1 + sinx - 2cos3x) = 0
A. x = ± π 3 + k2π, k ∈ Z
B. x = π 4 + kπ, k ∈ Z
C. x = - π 4 + k2π, x = - π 6 + k2π,k ∈ Z
D. Vô nghiệm
sinx + sin2x + sin3x = 1 + cosx + cos2x
cos3x + sin3x + cosx - sinx = \(\sqrt{2}\)cos2x
sinx + sin2x + sin3x = cosx + cos2x + cos3x
b: \(\Leftrightarrow2\cdot\cos2x\cdot\cos x+2\cdot\sin x\cdot\cos2x=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow2\cdot\cos2x\left(\sin x+\cos x\right)=\sqrt{2}\cdot\cos2x\)
\(\Leftrightarrow\sqrt{2}\cdot\cos2x\cdot\left[\sqrt{2}\cdot\sqrt{2}\cdot\sin\left(x+\dfrac{\Pi}{4}\right)-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos2x=0\\\sin\left(x+\dfrac{\Pi}{4}\right)=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\Pi}{2}+k\Pi\\x+\dfrac{\Pi}{4}=\dfrac{\Pi}{6}+k2\Pi\\x+\dfrac{\Pi}{4}=\dfrac{5}{6}\Pi+k2\Pi\end{matrix}\right.\)
\(\Leftrightarrow x\in\left\{\dfrac{\Pi}{4}+\dfrac{k\Pi}{2};\dfrac{-1}{12}\Pi+k2\Pi;\dfrac{7}{12}\Pi+k2\Pi\right\}\)
c: \(\Leftrightarrow2\cdot\sin2x\cdot\cos x+\sin2x=2\cdot\cos2x\cdot\cos x+\cos2x\)
\(\Leftrightarrow\sin2x\left(2\cos x+1\right)=\cos2x\left(2\cos x+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\cos2x=\sin\left(\dfrac{\Pi}{2}-2x\right)\\\cos x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\\\\x=-\dfrac{2}{3}\Pi+k2\Pi\\x=\dfrac{2}{3}\Pi+k2\Pi\end{matrix}\right.\)
Giải phương trình cosx+cos3x=sinx-sin3x
\(\lim\limits_{x\rightarrow0}\dfrac{1+sinx-cosx}{1+sin3x-cos3x}\)
Ok sau đây là 3 cách, mà mình thấy c3 chả được xài cách nào :( Cơ mà thoi kệ
Cách 3:
P/s: Hmm, thực ra thì ban đầu mình cũng nghĩ là sử dụng ngắt VCB tương đương k được đâu, bởi nó chỉ sử dụng cho tích và thương, cơ mà nó áp dụng cho tổng và hiệu khi mà 2 hạng tử mình biến đổi ra ko tương đương nhau, vậy nên cách 1 vẫn được chấp nhận nhé. Mình sẽ dele 2 câu trả lời kia để gộp 3 cách làm 1 câu trl cho tiện.
Giải phương trình sinx + sin2x + sin3x= cosx + cos2x+ cos3x
Chọn D
Ta sẽ biến đổi phương trình thành dạng tích
Chú ý: có thể dùng 4 đáp án thay vào phương trình để kiểm tra đâu là nghiệm
Giải phương trình lượng giác bậc nhất đối với sinx và cosx:
\(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)
\(\Leftrightarrow cos3x+\sqrt{3}sin3x=\sqrt{3}cosx+sinx\)
\(\Leftrightarrow\dfrac{1}{2}cos3x+\dfrac{\sqrt{3}}{2}sin3x=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)
\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{3}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\\3x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{\pi}{8}+\dfrac{k\pi}{2}\end{matrix}\right.\)
Rút gọn
A = \(\dfrac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x}\)
`A=[sin x+sin 2x+sin 3x]/[cos x+cos 2x+cos 3x]`
`A=[(sin x+sin 3x)+sin 2x]/[(cos x+cos 3x)+cos 2x]`
`A=[2sin 2x.cos (-x)+sin 2x]/[2cos 2x.cos (-x)+cos 2x]`
`A=[sin 2x(2cos(-x)+1)]/[cos 2x(2cos(-x)+1)]`
`A=[sin 2x]/[cos 2x]=tan 2x`.
(sin3x+cosx)sin3x+(cos3x+sinx)cos3x/ cos4x = 1+tan2x/1-tan2x
\(\frac{\left(sin3x+cosx\right)sin3x+\left(cos3x+sinx\right)cos3x}{cos4x}\)
\(=\frac{sin^23x+sin3x.cosx+cos^23x+cos3x.sinx}{cos4x}=\frac{1+sin3x.cosx+cos3x.sinx}{cos4x}\)
\(=\frac{1+sin4x}{cos4x}=\frac{sin^22x+cos^22x+2sin2x.cos2x}{cos^22x-sin^22x}=\frac{\left(cos2x+sin2x\right)^2}{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}\)
\(=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{1+\frac{sin2x}{cos2x}}{1-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)
Nghiệm của phương trình - sin 3 x + cos 3 x = sin x – cos x là:
A. x = π/4+kπ, k ∈ Z
B. x = ± π/4+kπ, k ∈ Z
C. x = π/4+k2π, k ∈ Z
D. x = - π/4+kπ, k ∈ Z
Chọn A
Ta có: - sin 3 x + cos 3 x = sin x – cos x
⇔ ( c os x- sin x) . ( c os 2 x + c osx. sin x+sin 2 x ) + ( c os x - sin x) = 0 ⇔ ( c os x- sin x) . ( 1 + c osx. sin x ) + ( c os x - sin x) = 0 ⇔ ( c osx - sin x ). (1+ c os x. sinx + 1 ) = 0 ⇔ ( c osx - sin x ). (2+ sin 2 x 2 ) = 0 ⇔ cosx - sinx = 0 sin 2 x 2 = − 2
cosx - sin x =0 ⇔ 2 cos x + π 4 = 0 ⇔ cos x + π 4 = 0 ⇔ x + π 4 = π 2 + k π ⇔ x = π 4 + k π
sin 2 x 2 = − 2 ⇔ sin 2 x = − 4 < − 1 n ê n l o ạ i
Vậy nghiệm của phương trình đã cho là: x = π 4 + k π