Tìm m để đồ thị hàm số \(y=x^3-3mx^2-x+3m\) tiếp xúc Ox
Cho hàm số y = x 3 - 3 x 2 + 3 m x + 1 - m . Có bao nhiêu giá trị thực của m để đồ thị tiếp xúc với Ox?
A. 3
B. 1
C. 2
D. 0
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=x^3-2x^2+3mx+1\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;3) .
Goi \(B\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow x_0=1\Rightarrow y_0=3m\)
\(y'=3x^2-4x+3m\Rightarrow y'\left(1\right)=3-4+3m=3m-1\)
\(\Rightarrow pttt:y=\left(3m-1\right)\left(x-1\right)+3m\)
\(A\left(1;3\right)\in pttt\Rightarrow\left(3m-1\right)\left(1-1\right)+3m=3\Leftrightarrow3m=3\Leftrightarrow m=1\)
Tính: tổng S tất cả các giá trị tham số m để đồ thị hàm số f ( x ) = x 3 - 3 m x 2 + 3 m x + m 2 - 2 m 3 tiếp xúc với trục hoành.
A. S = 1
B. S = 0
C. S = 2 3
D. S = 4 3
Tìm m để đường thẳng (d): \(y=mx+4\) tiếp xúc với đồ thị hàm số (P): \(\dfrac{-x^2}{4}\) .
(hai đồ thị hàm số tiếp xúc nhau là hai đồ thị chỉ có 1 điểm chung)
Giúp mk làm bài này với
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-4=0\)
\(\Leftrightarrow x^2+4mx+16=0\)
\(\Delta=\left(4m\right)^2-4\cdot1\cdot16=16m^2-64\)
Để hai đồ thị tiếp xúc với nhau thì 16m2-64=0
=>m=2 hoặc m=-2
cho hàm số y=1/4x^2 có đồ thị là (p) và hàm số y=x+m có đồ thị là (d)
a) Vẽ đồ thị (p) của hàm số y=1/4x^2
b) Tìm giá trị của m để (d) tiếp xúc với (p). Tìm tọa độ tiếp điểm
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
Bài III(2 điểm) Cho hàm số y= (3m - 1)x + 4.
1) Vẽ đồ thị hàm số với m = 1
2) Tìm m để đồ thị hàm số cắt trục Ox, Oy tại 2 điểm A, B sao cho tam giác OABcó diện tích bằng 6
\(1,m=1\Leftrightarrow y=2x+4\\ 2,\text{PT giao Ox: }y=0\Leftrightarrow\left(3m-1\right)x=-4\Leftrightarrow x=\dfrac{4}{1-3m}\Leftrightarrow A\left(\dfrac{4}{1-3m};0\right)\Leftrightarrow OA=\dfrac{4}{\left|1-3m\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\\ S_{OAB}=\dfrac{1}{2}OA\cdot OB=6\\ \Leftrightarrow\dfrac{1}{2}\cdot\dfrac{4}{\left|1-3m\right|}\cdot4=6\\ \Leftrightarrow\dfrac{8}{\left|1-3m\right|}=6\\ \Leftrightarrow\left|1-3m\right|=\dfrac{4}{3}\Leftrightarrow\left[{}\begin{matrix}1-3m=\dfrac{4}{3}\\3m-1=\dfrac{4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{1}{9}\\m=\dfrac{7}{9}\end{matrix}\right.\)
Cho các hàm số: y = (m - 1)x + 2m – 5 (1)
y = (3 – 2m)x + m – 8 (2)
Tìm m để góc tạo bởi đồ thị hàm số (1) với Ox là
60o
. Tìm m để góc tạo bởi đồ thị hàm số (2) với Ox là
120o
.
Ta có : tg60=m-1
\({\sqrt{3}=m-1} \) \(->m=\sqrt{3} +1\)
\(tan120=3-2m <=> -\sqrt{3}=3-2m \)
m=\(\frac{3+\sqrt{3}}{2}\)
tìm m để đồ thị hàm số \(\left(C_m\right):y=x^3-3mx^2+3\left(m^2-1\right)x-m^3+m\) có cực trị đồng thời khoảng cách từ điểm cực đại của đồ thị hàm số O bằng √2 lần khoảng cách từ điểm cực tiểu của đồ thị hàm số đến O ( O là gốc tọa độ )
Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$
$\Leftrightarrow x^2-2mx+m^2-1=0$
$\Leftrightarrow x=m+1$ hoặc $x=m-1$
Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$
Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$
$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu
$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại
$BO=\sqrt{2}AO$
$\Leftrightarrow BO^2=2AO^2$
$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$
$\Leftrightarrow m=-3\pm 2\sqrt{2}$
Câu 2: Cho hàm số y = ( 3m-1)x + m +2 . Tìm tham số m để đồ thị hàm số cắt trục tung tại điểm có tung độ là −3.
Câu 3: Cho hàm số y = 2mx-3m+2 . Tìm tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2
Câu 2:
Thay x=0 và y=-3 vào (d), ta được:
m+2=-3
hay m=-5