Tìm tâm và bán kính của đường tròn :
x2 + y2 – 4x + 6y – 3 = 0.
Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y - 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 - 4x + 6y – 3 = 0
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính
b) 16x2 + 16y2 + 16x – 8y –11 = 0
⇒ Đường tròn có tâm , bán kính
c) x2 + y2 - 4x + 6y - 3 = 0
⇔ x2 + y2 - 2.2x - 2.(-3).y - 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 - 2x - 2y - 2 = 0
⇔ (x2 - 2x + 1) + (y2 - 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x - 8y - 11 = 0
Vậy đường tròn có tâm và bán kính R = 1.
c) x2 + y2 - 4x + 6y -3 = 0
⇔ (x2 - 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x - 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
Cho đường tròn (C): x 2 + y 2 + 4x + 6y + 3 = 0 có tâm I và bán kính R là:
A. I(2;3), R = 10
B. I(2;3), R = 10
C. I(-2;-3), R = 10
D. I(-2;-3), R = 10
Đáp án: D
Ta có:
(C): x 2 + y 2 + 4x + 6y + 3 = 0 ⇔ (x + 2 ) 2 + (y + 3 ) 2 = 10
Vậy I(-2;-3), R = 10
Cho đường tròn (C) có phương trình x 2 + y 2 + 4 x − 6 y − 3 = 0 . Khi đó đường tròn có tâm I và bán kính R với
A. I(4; -6), R = 4
B. I(-2; 3), R = 16
C.I(-4; 6), R = 4
D. I(-2; 3) , R = 4
Ta có x 2 + y 2 + 4 x − 6 y − 3 = 0 ⇔ x + 2 2 + y − 3 2 = 16 nên đường tròn có tâm I(-2; 3) và bán kính R = 4.
Chú ý. Học sinh có thể áp dụng công thức tính tâm và bán kính của đường tròn khi biết phương trình tổng quát của đường tròn
ĐÁP ÁN D
Đường tròn (C): x 2 + y 2 - 4x + 6y - 12 = 0 có tâm I và bán kính R là:
A. I(-2;3), R = 25
B. I(-2;3), R = 5
C. I(2;-3), R = 25
D. I(2;-3), R = 5
Đáp án: D
(C): x 2 + y 2 - 4x + 6y - 12 = 0 ⇔ (x - 2 ) 2 + (y + 3 ) 2 = 25
Vậy đường tròn (C) có I(2;-3), R = 5
Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng.
a) x2 + y2 + xy + 4x – 2 = 0;
b) x2 + y2 – 2x – 4y + 5 = 0;
c) x2 + y2 + 6x – 8y + 1 = 0.
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
Trong mặt phẳng Oxy, cho đường tròn (C) : x2 + y2+ -4x-6y-12=0 Gọi M là điểm trên d: 2x-y+3=0 sao cho MI = 2R sao cho MI = 2R với I, R lần lượt là tâm và bán kính của (C). Tổng hoành độ các điểm M thỏa mãn là
A.1/4
B. 4/5
C. -1/5
D. -4/5
Đường tròn (C): x 2 + y 2 - 4x - 2y - 20 = 0 có tâm I và bán kính R là:
A. I(-2;-1), R = 25
B. I(2;1), R = 25
C. I(-2;-1), R = 5
D. I(2;1), R = 5
Đáp án: D
Ta có:
(C): x 2 + y 2 - 4x - 2y - 20 = 0 ⇔ (x - 2 ) 2 + (y - 1 ) 2 = 25
Vậy đường tròn (C) có: I(2;1), R = 5
Trong mặt phẳng Oxy, cho đường tròn (C):x2+y2 -4x+6y-3=0. Tìm ảnh của đường tròn (C) qua phép quay tâm A(-3;2), góc quay -180 độ
Tìm tọa độ tâm I và bán kính R của đường tròn (C): x 2 + y 2 - 2 x + 4 y + 1 = 0
A. I (-1;2) ; R = 4
B. I (1;-2) ; R = 2
C. I (-1;2) ; R = 5
D. I (1;-2) ; R = 4
Tìm tọa độ tâm I và bán kính R của đường tròn (C): x 2 + y 2 - 2 x + 4 y + 1 = 0
A. I(-1;2); R=4
B. I(1;-2); R=2
C. I - 1 ; 2 ; R = 5
B. I(1;-2); R=2