Đường tròn (C):x2+y2-2x+8y-32=0 có tâm và bán kính là bao nhiêu?
Tìm tâm và bán kính của các đường tròn sau :
a) \(x^2+y^2-2x-2y-2=0\)
b) \(16x^2+16y^2+16x-8y-11=0\)
c) \(x^2+y^2-4x+6y-3=0\)
Đường tròn (C): x2+y2-2x-6y=0. Tìm tọa độ M thuộc đường thẳng x=3 để từ M kẻ được tới (C) 2 tiếp tuyến vuông góc.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm H(2;3) và phương trình đường tròn đi qua chân các đường cao của tam giác ABC có phương trình (C): x2 + y2 - 4x - 4y +1 =0. Viết phương trình đường tròn ngoại tiếp tam giác ABC
Tìm tâm và bán kính của đường tròn :
16x2+ 16y2+ 16x – 8y – 11 = 0
Tìm tâm và bán kính của đường tròn :
x2+ y2– 2x – 2y – 2 = 0
Cho đường tròn (C): (x+1)^2 +(y-7)^2 =85 A. Tìm tâm và bán kính của đường tròn B. Viết phương trình tiếp tuyến của đường tròn tại điểm M(1;-2)
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
lập phương trình đường tròn có bán kính =1,tiếp xúc với trục hoành vầ có tâm nằm trên đường thẳng ;x+y-3=0