Chứng minh: 2x2-8x+12>0 với mọi x
1. Chứng minh rằng: 2x2 + 3x + 2 > 0 với mọi x
2. Giải phương trình: (x+9)(x+10)(x+11) - 8x = 0
Giúp tớ với nhé. Ngày mai phải nộp rồi
Có : \(2x^2+3x+2\)
\(\Leftrightarrow\) \(\left(x^2+2x+1^2\right)+\left(x^2+x+1^2\right)\)
\(\Leftrightarrow\) \(\left(x^2+2.x.1+1^2\right)\) + \(\left(x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)
\(\Leftrightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+1\right)^2\ge0và\left(x+\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\) \(\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Vậy \(2x^2+3x+2>0\left(\forall_x\right)\)
Chứng minh rằng:
a) x2 + x + 1 > 0 với mọi x
b)4y2 + 2y + 1 > 0 với mọi y
c) -2x2 + 6x - 10 < 0 với mọi x
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall x\)
b: \(4y^2+2y+1\)
\(=4\left(y^2+\dfrac{1}{2}y+\dfrac{1}{4}\right)\)
\(=4\left(y^2+2\cdot y\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{3}{16}\right)\)
\(=4\left(y+\dfrac{1}{4}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}>0\forall y\)
c: \(-2x^2+6x-10\)
\(=-2\left(x^2-3x+5\right)\)
\(=-2\left(x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}\right)\)
\(=-2\left(x-\dfrac{3}{2}\right)^2-\dfrac{11}{2}< =-\dfrac{11}{2}< 0\forall x\)
`#3107.101107`
a)
`x^2 + x + 1`
`= (x^2 + 2*x*1/2 + 1/4) + 3/4`
`= (x + 1/2)^2 + 3/4`
Vì `(x + 1/2)^2 \ge 0` `AA` `x`
`=> (x + 1/2)^2 + 3/4 \ge 3/4` `AA` `x`
Vậy, `x^2 + x + 1 > 0` `AA` `x`
b)
`4y^2 + 2y + 1`
`= [(2y)^2 + 2*2y*1/2 + 1/4] + 3/4`
`= (2y + 1/2)^2 + 3/4`
Vì `(2y + 1/2)^2 \ge 0` `AA` `y`
`=> (2y + 1/2)^2 + 3/4 \ge 3/4` `AA` `y`
Vậy, `4y^2 + 2y + 1 > 0` `AA` `y`
c)
`-2x^2 + 6x - 10`
`= -(2x^2 - 6x + 10)`
`= -2(x^2 - 3x + 5)`
`= -2[ (x^2 - 2*x*3/2 + 9/4) + 11/4]`
`= -2[ (x - 3/2)^2 + 11/4]`
`= -2(x - 3/2)^2 - 11/2`
Vì `-2(x - 3/2)^2 \le 0` `AA` `x`
`=> -2(x - 3/2)^2 - 11/2 \le 11/2` `AA` `x`
Vậy, `-2x^2 + 6x - 10 < 0` `AA `x.`
chứng minh 2x2+4y2+4xy-6x+100>0 với mọi x,y
\(2x^2+4y^2+4xy-6x+100=\left(x^2+4xy+4y^2\right)+\left(x^2-6x+9\right)+91=\left(x+2y\right)^2+\left(x-3\right)^2+91\ge91>0\)
Chứng minh rằng các biểu thức sau luôn nhận giá trị dương với mọi giá trị của biến.
a) x2 - 5x +10
b) 2x2 + 8x +15
c) (x-1).(x-2) + 5
d) (x+5).(x-3) + 20
Mọi người giúp mình với :<
a: \(x^2-5x+10\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)
b: \(2x^2+8x+15\)
\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x+2\right)^2+7>0\forall x\)
Chứng minh: x^2 – 8x +20 > 0 với mọi x
Giúp em với ạ
\(x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4\ge4>0\forall x\)
Chứng minh rằng: x^2 - 8x + 17 >0, với mọi x
Ta có:
x^2-8x+17=x^2-8x+16+1
=(x-4)^2+1
Vì (x-4)^4>=0 với mọi x
=>(x-4)^2+1>=1
mà 1>0=>(x-4)^2+1>0 với mọi x
Hay x^2-8x+17>0 với mọi x
Chứng minh rằng
-x2 + 8x - 19 < 0 với mọi giá trị x
\(-x^2+8x-19=-\left(x^2-8x+16\right)-3=-\left(x-4\right)^2-3\le-3< 0\)
1, Chứng minh:
a. A = 5 - 8x - x^2 < 0 với mọi x
b.B = 3x . x +3 +7 > 0 với mọi x
\(A=5-8x-x^2=-x-8x-16+21=-\left(x-4\right)^2+21\le21\)
Chưa thể cm được
\(B=3x^2+3x+7=3x^2+3x+\frac{3}{4}+\frac{25}{4}=3\left(x+\frac{1}{2}\right)^2+\frac{25}{4}\ge\frac{25}{4}>0\)
=> Đpcm
Bài làm :
\(a\text{)A=}5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+8x+16\right)+21=-\left(x+4\right)^2+21\)
Vì -(x+4)2 ≤ 0 với mọi x
=> -(x+4)2 + 21 ≤ 21
=> Không thể khẳng định được A<0 bạn nhé
\(\text{b)}3x.x+3+7=3x^2+10\)
Vì x2 ≥ 0 với mọi x
=> 3x2 ≥ 0 với mọi x
=> 3x2 + 10 ≥ 10 > 0 với mọi x
=> Điều phải chứng minh
Chứng minh rằng với mọi x thuộc z thì:
\(A=\dfrac{x^3-x^2-8x+12}{x^2+4-4x}\) là số nguyên
\(A=\dfrac{x^3-4x^2+4x+3x^2-12x+12}{x^2-4x+4}\)
\(=\dfrac{x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)}{x^2-4x+4}\)
\(=\dfrac{\left(x+3\right)\left(x^2-4x+4\right)}{x^2-4x+4}=x+3\)
\(\Rightarrow A\in Z\)