\(A=\dfrac{x^3-4x^2+4x+3x^2-12x+12}{x^2-4x+4}\)
\(=\dfrac{x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)}{x^2-4x+4}\)
\(=\dfrac{\left(x+3\right)\left(x^2-4x+4\right)}{x^2-4x+4}=x+3\)
\(\Rightarrow A\in Z\)
\(A=\dfrac{x^3-4x^2+4x+3x^2-12x+12}{x^2-4x+4}\)
\(=\dfrac{x\left(x^2-4x+4\right)+3\left(x^2-4x+4\right)}{x^2-4x+4}\)
\(=\dfrac{\left(x+3\right)\left(x^2-4x+4\right)}{x^2-4x+4}=x+3\)
\(\Rightarrow A\in Z\)
1) Chứng minh rằng:
a) x3 + 2 > hoặc = 3x, với mọi x
b) x4 + 3 > hoặc = 4x, với mọi x
Cho biểu thức A = ( \(\dfrac{x+1}{2x-2}\) + \(\dfrac{3}{x^2-1}\) - \(\dfrac{x+3}{2x+2}\) ) . \(\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện xác định của x để biểu thức A xác định
b, Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào biến x
giúp tớ ạ!!!
Chứng tở rằng giá trị của các biểu thức sau không phụ thuộc vào giá trị của biến x:
A= (4x-3)(4x+3)- (4x+1)2+8x
B= (x-2)3 - (12x+1)+ x(6x- x2)
C= (x+2)(x2 - 2x+4)- x(x2+3) =3x
d= (x2-2)(x4 + 2x2+4) +(2- x3)(2+x3)
cho biểu thức A=\(\dfrac{1}{x-2}+\dfrac{1}{x+2}+\dfrac{x^2+1}{x^2-4}\) (với x ≠+-2)
a) rút gọn A
b)chứng tỏ rằng với mọi x thõa mãn -2<x<2, x≠-1 biểu thức A luôn có giá trị âm
Cho \(x,y,z\ne0\) .Chứng minh rằng \(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\)
Cho biểu thức: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}\right):\left(\dfrac{2x+2}{x-1}-\dfrac{4x}{x^2-1}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Chứng minh rằng với điều kiện đó, giá trị cảu biểu thức không phụ thuộc vào biến x.
B1: Tính:
\(B=\dfrac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\dfrac{x^2-25}{9x^2-\left(2x+5\right)^2}-\dfrac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
B2: Xác định a, b, c:
a, \(\dfrac{10x-4}{x^3-4x}=\dfrac{a}{x}+\dfrac{b}{1-2}+\dfrac{c}{n+2}\) với mọi x khác 0, x khác \(\pm2\)
b, \(\dfrac{1}{x^3-1}=\dfrac{a}{x-1}+\dfrac{bx+c}{x^2+x+1}\)
Help me!!!
Cho \(P=\dfrac{x^4+x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
a, Rút gọn P
b, Chứng minh P luôn ko âm với mọi x
Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:
\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\) và \(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)