Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Quỳnh Mai

Cho a,b,c và x,y,z là các số khác nhau và khác không chứng minh rằng nếu:

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\) thì \(\dfrac{x^2}{a^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{c^2}=1\)

lê thị hương giang
13 tháng 11 2017 lúc 12:24

\(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)

\(\Rightarrow\dfrac{abz}{xyz}+\dfrac{bxz}{xyz}+\dfrac{cxy}{xyz}=0\)

\(\Rightarrow\dfrac{abz+bxz+cxy}{xyz}=0\)

\(\Rightarrow abz+bxz+cxy=0\)

\(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1\)

\(\Rightarrow\left(\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}\right)^2=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\dfrac{xy}{ab}+2\dfrac{xz}{ac}+2\dfrac{yz}{bc}=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{xy}{ab}+\dfrac{xz}{ac}+\dfrac{yz}{bc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy}{abc}+\dfrac{bxz}{abc}+\dfrac{ayz}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2\left(\dfrac{cxy+bxz+ayz}{abc}\right)=0\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.\left(\dfrac{0}{abc}\right)=1\)

\(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+2.0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}+0=1\) \(\Rightarrow\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=1\) ( đpcm )


Các câu hỏi tương tự
Ngoc An Pham
Xem chi tiết
Linhh
Xem chi tiết
Bối Vy Vy
Xem chi tiết
Dương Lam Nguyệt
Xem chi tiết
Kitana
Xem chi tiết
Duy Trần
Xem chi tiết
Trần Kiều Thi
Xem chi tiết
Anh Pha
Xem chi tiết
Vũ Anh Quân
Xem chi tiết