Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

Cho \(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)

\(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)

Chứng minh nếu P=1 thì Q=0

Đức Cường
2 tháng 6 2017 lúc 19:30

Bài này mình làm 2 cách cho bạn dễ hiểu nha

C1:\(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\Leftrightarrow x\left(z+x\right)\left(x+y\right)+y\left(y+z\right)\left(x+y\right)+z\left(z+x\right)\left(y+z\right)=\left(y+z\right)\left(x+y\right)\left(z+x\right) \)\(\Leftrightarrow x^2\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)+x^3+y^3+z^3+3xyz=x^2\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)+2xyz\)

\(\Leftrightarrow x^3+y^3+z^3+xyz=0\)

\(\Rightarrow\left(x^3+y^3+z^3+xyz\right)\left(x+y+z\right)=0 \)

Ta cũng thấy Q=\(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=\dfrac{x^2\left(z+x\right)\left(x+y\right)+y^2\left(y+z\right)\left(x+y\right)+z^2\left(y+z\right)\left(z+x\right)}{\left(y+z\right)\left(x+z\right)\left(x+y\right)}=\dfrac{\left(x^3+y^3+z^3+xyz\right)\left(x+y+z\right)}{\left(y+z\right)\left(x+z\right)\left(x+y\right)}=0\)

Đức Cường
2 tháng 6 2017 lúc 19:39

C2 nè :
\(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\)

\(P=\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=x+y+z .\)

\(\Leftrightarrow\dfrac{x^2+x\left(y+z\right)}{y+z}+\dfrac{y^2+y\left(x+z\right)}{z+x}+\dfrac{z^2+z\left(x+y\right)}{x+y}=x+y+z.\)

\(\Leftrightarrow\dfrac{x^2}{y+z}+x+\dfrac{y^2}{z+x}+y+\dfrac{z^2}{x+y}+z=x+y+z \left(ĐPCM\right)\)

Trịnh Trân Trân
3 tháng 6 2017 lúc 14:27

Q = \(\dfrac{x^2}{y+z}\) + \(\dfrac{y^2}{x+z}\) + \(\dfrac{z^2}{x+y}\)

= \(\dfrac{x\left[\left(x+y+z\right)-\left(y+z\right)\right]}{y+z}\) + \(\dfrac{y\left[\left(x+y+z\right)-\left(x+z\right)\right]}{x+z}\) + \(\dfrac{z\left[\left(x+y+z\right)-\left(x+y\right)\right]}{x+y}\)

= \(\dfrac{x\left(x+y+z\right)-x\left(y+z\right)}{y+z}\) + \(\dfrac{y\left(x+y+z\right)-y\left(x+z\right)}{x+z}\) + \(\dfrac{z\left(x+y+z\right)-z\left(x+y\right)}{x+y}\)

= \(\dfrac{x\left(x+y+z\right)}{y+z}\) - x + \(\dfrac{y\left(x+y+z\right)}{x+z}\) - y + \(\dfrac{z\left(x+y+z\right)}{x+y}\) - z

= (x + y + z)\(\left[\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right]\) - (x + y + z)

= (x + y +z) . P - (x + y + z)

= ( x + y +z) .1 - (x + y +z)

= 0 (đpcm)

Bối Vy Vy
17 tháng 1 2018 lúc 20:51

vậy còn nếu Q=0? Có chắc chắn P=1 ko?


Các câu hỏi tương tự
Bối Vy Vy
Xem chi tiết
Nữ Thần Mặt Trăng
Xem chi tiết
Huyền Anh Kute
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Nguyễn Thị Quỳnh Mai
Xem chi tiết
Anh Tú Dương
Xem chi tiết
Ngoc An Pham
Xem chi tiết
Beautiful Angel
Xem chi tiết