(a + b) \(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)≥4 ( ví a>0 , b>0)
Chứng minh các bất đẳng thức :
a / \(\dfrac{a}{b}+\dfrac{b}{a}>=2;\forall a,b>0\)
b / \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>=3;\forall a,b,c>0\)
c / \(\left(a+b\right)\left(b+c\right)+\left(c+a\right)>=8abc;\forall a,b,c>=0\)
d / \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)>=9,\forall a,b,c>0\)
e / \(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)+\left(1+\dfrac{c}{a}\right)>=8,\forall a,b,c>0\)
f / \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4,\forall a,b,>0\)
HELP ME !!!!!!
a) Áp dụng BĐT AM - GM:
\(\dfrac{a}{b}+\dfrac{b}{a}\) >= 2\(\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\) =2
Dấu '=' xảy ra <=> a=b=1
c) Áp dụng BĐT AM- GM a+b>= 2\(\sqrt{ab}\)
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\) >= 8\(\sqrt{ab.bc.ca}\) = 8abc
Dấu '=' xảy ra <=> a=b=c
B1:C/m
a)\(\dfrac{a^2+b^2}{2}\)\(>=ab\)
b)(a+b)\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)>=4\) (với a>0,b>0)
c)\(a\left(a+2\right)< \left(a+1\right)^2\)
a.
Giả sử: \(\dfrac{a^2+b^2}{2}\ge ab\) ( đúng )
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Vậy \(\dfrac{a^2+b^2}{2}\ge ab\)
b.Giả sử: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\) ( đúng )
\(\Leftrightarrow\left(a+b\right)\left(\dfrac{a+b}{ab}\right)\ge4\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{ab}\ge4\)
\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
Vậy \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)
\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)
Thật vậy, ta có:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)
Vậy ta cần chứng minh:
\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)
Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c
cho các mệnh đề sau :
(I).a+\(\dfrac{9}{a}\)\(\ge6\) (a>0)
(II).\(\dfrac{a^2+5}{\sqrt{a^2+4}}\ge2\)
(III).\(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{1}{2}\left(ab\ge0\right)\)
(IV).\(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge4\left(a,b>0\right)\)
Số mệnh đề đúng trong các mệnh đề trên là
I. Đúng do BĐT Cosi \(a+\dfrac{9}{a}\ge2.\sqrt{a.\dfrac{9}{a}}=6\)
II. Sai do \(\dfrac{a^2+5}{\sqrt{a^2+4}}=\sqrt{a^2+4}+\dfrac{1}{\sqrt{a^2+4}}\ge2+\dfrac{1}{a^2+4}>2\)
III. Đúng do BĐT Cosi \(\dfrac{\sqrt{ab}}{ab+1}\le\dfrac{\sqrt{ab}}{2\sqrt{ab}}=\dfrac{1}{2}\)
IV. Đúng do BĐT BSC \(\left(a+\dfrac{1}{b}\right)\left(b+\dfrac{1}{a}\right)\ge\left(\sqrt{a}.\dfrac{1}{\sqrt{a}}+\sqrt{b}.\dfrac{1}{\sqrt{b}}\right)^2=4\)
1)cho a,b,c >0. \(cmr:\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ca}+\dfrac{1}{c^2+ab}\le\dfrac{a+b+c}{2abc}\)
2) cho a,b,c>0 và a+b+c=1. \(cmr:\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)
3) cho a,b,c>0. \(cme:\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\)
4) cho a,b,c>0 .\(cmr:\dfrac{a^3}{b^3}+\dfrac{b^3}{c^3}+\dfrac{c^3}{a^3}\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\)
5)cho a,b,c>0. cmr: \(\dfrac{1}{a\left(a+b\right)}+\dfrac{1}{b\left(b+c\right)}+\dfrac{1}{c\left(c+a\right)}\ge\dfrac{27}{2\left(a+b+c\right)^2}\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Thay $1=a+b+c$ và áp dụng BĐT AM-GM ta có:
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\frac{(a+1)(b+1)(c+1)}{abc}\)
\(=\frac{(a+a+b+c)(b+a+b+c)(c+a+b+c)}{abc}\)
\(\geq \frac{4\sqrt[4]{a.a.b.c}.4\sqrt[4]{b.a.b.c}.4\sqrt[4]{c.a.b.c}}{abc}=\frac{64abc}{abc}=64\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Cho a,b>0 thỏa mãn: a+b=1. CM: \(\left(a+\dfrac{1}{a}\right).\left(b+\dfrac{1}{b}\right)\ge\dfrac{25}{4}\)
Ta có : \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)=ab+\dfrac{1}{ab}+\dfrac{a}{b}+\dfrac{b}{a}\)
\(=\left(ab+\dfrac{1}{16ab}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{15}{16ab}\)
Áp dụng BĐT Cô - si có
\(ab+\dfrac{1}{16ab}\ge2\sqrt{ab\cdot\dfrac{1}{16ab}}=\dfrac{1}{2}\)
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
Có : \(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\dfrac{1}{4}\Rightarrow16ab\le4\Rightarrow\dfrac{15}{16ab}\ge\dfrac{15}{4}\)
Do đó \(\left(a+\dfrac{1}{a}\right)\left(b+\dfrac{1}{b}\right)\ge2+\dfrac{1}{2}+\dfrac{15}{4}=\dfrac{25}{4}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)
chứng minh răng :
a,\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\cdot\left(1-\dfrac{a-\sqrt{a}}{a-1}\right)=1-a\left(a>hoaăặc=0,a\right)\left(a#1\right)\)b, \(\dfrac{\sqrt{ab}-b}{\sqrt{b}}-\sqrt{\dfrac{a}{b}}< 0\left(a>hoac=0,b>0\right)\)
\(=\dfrac{\sqrt{ab}-b-\sqrt{a}}{\sqrt{b}}\)
Tìm GTNN của :
a) \(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)với a, b > 0
b) \(B=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)với a, b, c > 0
c) \(C=\left(a+b+c+d\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)với a, b, c, d > 0
A=\(\left(a+b\right)\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
= \(\dfrac{a}{a}+\dfrac{b}{b}+\dfrac{a}{b}+\dfrac{b}{a}\)
= \(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
Áp dụng BĐT cô si cho 2 số ta có
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)
⇔\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)
⇔\(2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge4\)
⇔ A ≥4
=> Min A =4
dấu "=" xảy ra khi
\(\dfrac{a}{b}=\dfrac{b}{a}\)
⇔a2=b2
⇔a=b
vậy Min A =4 khi a=b
Cho a,b,c>0 thỏa abc=1. Chứng minh :
\(\dfrac{a}{\left(a+1\right)^2}+\dfrac{b}{\left(b+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le\dfrac{1}{4}\)
Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:
Phân tích và giải
Dễ thấy: Dấu "=" khi \(a=b=c=1\)
\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)
Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)
Ta sẽ chia làm 2 bước cm:
B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :
\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)
\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)
\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)
\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)
Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))
\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)
B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)
Tự cm nhé Goodluck :v
Một lời giải sơ cấp:
Đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\).BDT cần chứng minh tương đương:
\(\sum\dfrac{xy}{\left(x+y\right)^2}-\dfrac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{1}{4}\)
\(\Leftrightarrow\left[\dfrac{3}{4}-\sum\dfrac{xy}{\left(x+y\right)^2}\right]+\left[\dfrac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}-\dfrac{1}{2}\right]\ge0\)
\(\Leftrightarrow\sum\left[\dfrac{1}{4}-\dfrac{xy}{\left(x+y\right)^2}\right]-\dfrac{\sum\left(x^2+y^2\right)z-6xyz}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)
\(\Leftrightarrow\sum\dfrac{\left(x-y\right)^2}{4\left(x+y\right)^2}-\dfrac{\sum z\left(x-y\right)^2}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)
\(\Leftrightarrow\sum\left(x-y\right)^2\left[\dfrac{1}{4\left(x+y\right)^2}-\dfrac{z}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\right]\ge0\)
hay \(S_a\left(y-z\right)^2+S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\ge0\)(*)
với \(\left\{{}\begin{matrix}S_a=\dfrac{1}{4\left(y+z\right)^2}-\dfrac{x}{2\prod\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-z\right)}{4\left(y+z\right)^2\left(x+y\right)\left(x+z\right)}\\S_b=\dfrac{1}{4\left(x+z\right)^2}-\dfrac{y}{2\prod\left(x+y\right)}=\dfrac{\left(y-x\right)\left(y-z\right)}{4\left(x+z\right)^2\left(x+y\right)\left(y+z\right)}\\S_c=\dfrac{1}{4\left(x+y\right)^2}-\dfrac{z}{2\prod\left(x+y\right)}=\dfrac{\left(z-x\right)\left(z-y\right)}{4\left(x+y\right)^2\left(y+z\right)\left(z+x\right)}\end{matrix}\right.\)
Dễ thấy \(S_a;S_b;S_c\) không phải là luôn không âm.Giả sử \(x=max\left\{x;y;z\right\}\).
Từ đó suy ra \(S_a\ge0\).Xét \(S_b+S_c=\dfrac{\left(y-z\right)^2}{4\left(x+y\right)^2\left(x+z\right)^2}\ge0,\forall x;y;z>0\)
Do đó \(VT=S_a\left(x-y\right)^2+\left[S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\right]\ge0\)
Ta sẽ chứng minh \(S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\ge0\) với \(S_b+S_c\ge0\)
và điều này đúng hay không e không biết, quan trọng là .. Chúc Mừng Năm Mới !!