Chứng minh rằng:
a) Nếu a\(⋮\)m ; b\(⋮\)m và a + b + c\(⋮\)m thì c\(⋮\)m
b) Nếu a\(⋮\)m ; b\(⋮\)m và a + b + c thì c\(⋮̸\)m
Chứng minh rằng:
a) ab - ba \(⋮\) 9 (a > b)
b) Nếu ab + cd \(⋮\) m thì abcd \(⋮\) m
Chứng minh rằng:
a) (a-b) - (c - d ) + (b+ c) = c + d
b) Nếu (a + b - c) - (a - b + c) = a + (- b - a + c ) thì b = c
Lời giải:
a.
$(a-b)-(c-d)+(b+c)=a-b-c+d+b+c=(a+d)+(-b+b)+(-c+c)$
$=a+d+0+0=a+d$
b.
$(a+b-c)-(a-b+c)=a+(-b-a+c)$
$a+b-c-a+b-c=a-b-a+c$
$(a-a)+(b+b)-(c+c)=(a-a)-b+c$
$2b-2c=-b+c$
$2b+b=2c+c$
$3b=3c$
$b=c$ (đpcm)
Cho tam giác ABC. Chứng minh rằng:
a) Nếu góc A nhọn thì \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \({b^2} + {c^2} = {a^2}\)
Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)
\( \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\;\cos A\)(1)
a) Nếu góc A nhọn thì \(\cos A > 0\)
Từ (1), suy ra \({b^2} + {c^2} > {a^2}\)
b) Nếu góc A tù thì \(\cos A < 0\)
Từ (1), suy ra \({b^2} + {c^2} < {a^2}\)
c) Nếu góc A vuông thì \(\cos A = 0\)
Từ (1), suy ra \({b^2} + {c^2} = {a^2}\)
Cho tam giác ABC vuông cân tại A (Â = 90°, AB = AC). Lấy E € AB
và Fe AC sao cho AE = AF. Đường thẳng đi qua A và vuông góc với BF cắt EC
tại M. Chứng minh rằng:
a) Chứng minh rằng ABAF = ACAE
b) Chứng minh rằng AEMA cân tại M,
c) Chứng minh rằng AAMC cân tại M. Từ đó, hãy suy ra ME = MC.
a: Xét ΔABF vuông tại A và ΔACE vuông tại E có
AB=AC
AF=AE
Do đó: ΔABF=ΔACE
Cho ABC vuông cân tại A. M là trung điểm cạnh BC. Điểm E nằm giữa M và C. Vẽ BH ⊥AE tại H, CK ⊥AE tại K. Chứng minh rằng:
a)Chứng minh: BAH=ACK
b)BH = AK.
c)HBM = KAM.
Chứng minh rằng:
a) Nếu số 2n là tổng của hai số chính phương thì n cũng là tổng của hai số chính phương
b) Nếu số n là tổng của hai số chính phương thì n\(^2\) cũng là tổng của hai số chính phương
c) Nếu mỗi số m và n đều là tổng của hai số chính phương thì tích mn cũng là tổng của hai số chính phương
Giả sử \(2n=a^2+b^2\)(a,b∈N).
⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)
Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.
⇒ \(\dfrac{a+b}{2}\) và \(\dfrac{a-b}{2}\) đều là số nguyên
chứng minh rằng:a(b-c) - b(a+c)+2bc = -c(a-b)
Chứng minh rằng:A=3/(1x4)+3/(2x6)+3/(3x8)+...+1/(2012x2013)<1,5
Nếu sai đề thì thông cảm nha! Đề nó ghi vậy.
Bài 18: Cho tam giác ABC, A=90 độ đường phân giác BE. Kẻ EH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a/ AE = EH b/Tam giác ABC=Tam giác HBK c/ AH // KC
d/ Nếu cho góc ABC=60 độ. Chứng minh: AC + KH > 3.AH
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
=>ΔBAE=ΔBHE
=>EA=EH và BA=BH
b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
c: Xét ΔBKC có BA/BK=BH/BC
nên AH//KC
Cho AABC vuông cân tại A.M là trung điểm cạnh BC. Điểm E năm giữa M và C. Vẽ BH 1
AE tại H,CK 1 AE tại K. Chứng minh rằng:
a) Chứng minh: BAH = ACK
b) BH = AK.
c) AHBM = AKAM .
d) A MHK vuông cân.
tham khảo
a, BH = AK:
Ta có: ΔABC vuông cân tại A.
=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)
Cũng có: BH ⊥ AE.
=> ΔBAH vuông tại H.
=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)
Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.
Xét ΔBAH và ΔACK có:
+ AB = AC (ΔABC cân)
+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)
+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)
=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng)
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]
Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]
AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]
Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.
Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.
Xét ΔMBH và ΔMAK có:
+ MA = MB (cmt)
+ HBMˆ=MAKˆHBM^=MAK^ (cmt)
+ BH = AK (câu a)
=> ΔMBH = ΔMAK (c - g - c)
c, ΔMHK vuông cân:
Xét ΔAMH và ΔCMK có:
+ AH = CK (ΔABH = ΔCAK)
+ MH = MK (ΔMBH = ΔMAK)
+ AM = CM (AM là trung tuyến)
=> ΔAMH = ΔCMK (c - c - c)
=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)
mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o
=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o
hay HMKˆ=90oHMK^=90o.
ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.
=> ΔHMK vuông cân tại M.