Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Nguyễn Thị
Xem chi tiết
Bạch Dương
Xem chi tiết
Akai Haruma
1 tháng 12 2021 lúc 0:30

Lời giải:

a.

$(a-b)-(c-d)+(b+c)=a-b-c+d+b+c=(a+d)+(-b+b)+(-c+c)$

$=a+d+0+0=a+d$

b.

$(a+b-c)-(a-b+c)=a+(-b-a+c)$

$a+b-c-a+b-c=a-b-a+c$

$(a-a)+(b+b)-(c+c)=(a-a)-b+c$

$2b-2c=-b+c$

$2b+b=2c+c$

$3b=3c$

$b=c$ (đpcm)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:32

Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc\;\cos A\)

\( \Rightarrow {b^2} + {c^2} - {a^2} = 2bc\;\cos A\)(1)

a) Nếu góc A nhọn thì \(\cos A > 0\)

Từ (1), suy ra \({b^2} + {c^2} > {a^2}\)

b) Nếu góc A tù thì \(\cos A < 0\)

Từ (1), suy ra \({b^2} + {c^2} < {a^2}\)

c) Nếu góc A vuông thì \(\cos A = 0\)

Từ (1), suy ra \({b^2} + {c^2} = {a^2}\)

Minhchau Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 22:11

a: Xét ΔABF vuông tại A và ΔACE vuông tại E có

AB=AC

AF=AE

Do đó: ΔABF=ΔACE

nmtđt
Xem chi tiết
Ami Mizuno
19 tháng 2 2022 lúc 7:58

undefined

Ami Mizuno
19 tháng 2 2022 lúc 7:59

undefined

Phương Anh
Xem chi tiết
Minh Hiếu
13 tháng 10 2021 lúc 15:33

Giả sử \(2n=a^2+b^2\)(a,b∈N).

⇒ \(n=\dfrac{a^2+b^2}{2}=\left(\dfrac{a+b}{2}\right)^2+\left(\dfrac{a-b}{2}\right)^2\)

Vì \(a^2+b^2\) là số chẵn nên a và b cùng tính chẵn, lẻ.

⇒ \(\dfrac{a+b}{2}\)  và \(\dfrac{a-b}{2}\) đều là số nguyên

nguyenthihong
Xem chi tiết
HT2k02
23 tháng 7 2021 lúc 10:13

Ta có (đề sai đấy bạn)

Vế trái = a(b-c) - b(a-c) = ab - ac  - ab + bc = - ac + bc = -c ( a-b)  = VP

Thùy Cái
23 tháng 7 2021 lúc 10:13

Ta có:

a(b-c) - b(a+c)=ab -ac -ab -bc=-(ac+bc)=-c(a+b)

dinh duc thang
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 8:44

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

=>ΔBAE=ΔBHE

=>EA=EH và BA=BH

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

c: Xét ΔBKC có BA/BK=BH/BC

nên AH//KC

 

Đinh Thị Hương
Xem chi tiết
Mạnh=_=
5 tháng 3 2022 lúc 15:28

tham khảo

a, BH = AK:

Ta có: ΔABC vuông cân tại A.

=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)

Cũng có: BH ⊥ AE.

=> ΔBAH vuông tại H.

=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)

Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.

Xét ΔBAH và ΔACK có:

+ AB = AC (ΔABC cân)

+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)

+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)

=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)

=> BH = AK (2 cạnh tương ứng)

b, ΔMBH = ΔMAK:

Ta có: BH ⊥ AK; CK ⊥ AE.

=> BH // CK.

=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]

Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]

Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]

AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]

Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]

Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.

Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.

Xét ΔMBH và ΔMAK có:

+ MA = MB (cmt)

+ HBMˆ=MAKˆHBM^=MAK^ (cmt)

+ BH = AK (câu a)

=> ΔMBH = ΔMAK (c - g - c)

c, ΔMHK vuông cân:

Xét ΔAMH và ΔCMK có:

+ AH = CK (ΔABH = ΔCAK)

+ MH = MK (ΔMBH = ΔMAK)

+ AM = CM (AM là trung tuyến)

=> ΔAMH = ΔCMK (c - c - c)

=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)

mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o

=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o

hay HMKˆ=90oHMK^=90o.

ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.

=> ΔHMK vuông cân tại M.