chứng tỏ rằng :
a, 52003 + 52002 + 52001 : 31
b, 439 + 440 + 441 : 21
giúp mik vs
Chứng minh rằng
52003+52002+52001 chia hết cho 31
Chứng minh:
(439+440+441) chia hết cho 28
\(4^{39}+4^{40}+4^{41}=4^{38}.\left(4+4^2+4^3\right)=4^{38}.84⋮28\left(Vì:84⋮28\right)\)
Số ?
a) 52 439 ; 52 440 ; 52 441 ; ........... ; ........... ; ........... ; ............
b) 46 754 ; 46 755 ; ........... ; 46 757 ; ........... ; ........... ; ............
c) 24 976 ; 24 977 ; ........... ; ........... ; 24 980 ; ........... ; ............
a) 52 439 ; 52 440 ; 52 441 ; 52 442 ; 52 443 ; 52 444 ; 52 445.
b) 46 754 ; 46 755 ; 46 756 ; 46 757 ; 46 758 ; 46 759 ; 46 760.
c) 24 976 ; 24 977 ; 24 978 ; 24 979 ; 24 980 ; 24 981 ; 24 982.
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước
1) 52005 +52003 = 52003(52+1)=52003(25+1) = 52003.26
Mà 26 chia hết cho 13 => ...
2)a2 + b2 + 1 ≥ ab + a + b <=> 2a2+2b2+2 ≥ 2ab + 2a +2b (*nhân cả hai vế với 2*)
<=> 2a2-2ab+2b2 +2 -2a -2b ≥0 (*chuyển vế phải sang vế trái và đổi dấu*)
<=> (a2-2ab+b2)+(a2-2a+1)+(b2-2b+1)≥0
<=> (a-b)2+(a-1)2+(b-1)2≥0
=> Bất đẳng thức đúng
=> đpcm
3) Ta có a+b+c=0
<=> a+b = -c
<=> (a+b)3=(-c)3
<=> a3+3a2b+3ab2+b3= -c3
<=> a3+b3+c3= -3a2b -3ab2 (*chuyển vế*)
<=> a3+b3+c3= -3ab(a+b) = -3ab(-c)=3abc (*do a+b = -c*)
Chứng minh rằng: 52005 + 52003 \(⋮\) 13.
\(5^{2005}+5^{2003}=5^{2003}.\left(5^2+1\right)=5^{2003}.26\)
Mà \(26⋮13\Rightarrow5^{2003}.26⋮13\)
Hay \(5^{2005}+5^{2003}⋮13\left(ĐPCM\right)\)
Chúc bn học tốt
Tính tổng A=4+42+43+...+441. Chứng minh rằng, A⋮21.
Sửa đề:\(A=4+4^2+4^3+...+4^{21}\)
=>\(4A=4^2+4^3+...+4^{22}\)
=>\(4A-A=4^{22}+4^{21}+...+4^3+4^2-4^{21}-...-4^3-4^2\)
=>\(3A=4^{22}-4^2\)
=>\(A=\dfrac{4^{22}-4^2}{3}\)
\(A=4+4^2+4^3+...+4^{21}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{19}+4^{20}+4^{21}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{19}\left(1+4+4^2\right)\)
\(=21\left(4+4^4+...+4^{19}\right)⋮21\)
B9 : Chứng tỏ rằng
a) số 10^100 + 5 chia hết cho 3 & 5
b) 10^50 + 44 chia hết cho 2 & 9
Giúp mik vs ạ , mik cảm ơn trc
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
chứng tỏ rằng vs mọi STN n thì số
A=n62 + 3n + 3 ko chia hết cho 9
nhanh giúp mik vs
chứng tỏ rằng vs mọi số tự nhiên n thì số
A=n^2 +3n + 3 ko chia hết cho 9
giúp mik vs
nhanh lên mọi ng