Cho ▲ABC nhọc đường cao AD, BE và CF cắt nhau tại( D ∈BC;E∈AC; F∈AB). Chứng minh
a. Tam giác ABD đồng dạng tam giác AHF và AF.AB=AH.AD
b.AF.AB=AE.AC và tâm giác AEF đồng dạng Tam giác ABC
c. FC là phân giác của góc EFD và Bc^2=BH.BE+CH.CF
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:
d) H và M đối xứng nhau qua BC
d) Tam giác ADB vuông tại D có: ∠(A1) + ∠(ABC) = 90o (1)
Tam giác BCF vuông tại F có: ∠(C1) + ∠(ABC) = 90o (2)
Từ (1)và (2) ⇒ ∠(A1) = ∠(C1)
Mặt khác, ta có: ∠( A 1 ) = ∠( C 2 ) ( 2 góc nội tiếp cùng chắn cung BM)
⇒ ∠( C 1 ) = ∠( C 2 )
⇒ CD là tia phân giác của góc HCM
Xét tam giác HCM có: CD vừa là tia phân giác vừa là đường cao (CD⊥HD)
⇒ Δ HCM cân tại C
⇒ CD cũng là trung tuyến của của HM hay H và M đối xứng với nhau qua D.
Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : Nếu AD+BC=BE+AC=CF+AB thì tam giác ABC đều.
Cho D ABC nhọn (AB <AC) nội tiếp đường tròn (O), Ba đường cao AD;BE; CF cắt nhau tại H. Hai đường cao BE; CF lần lượt cắt đường tròn tại điểm thứ hai là M và N. FD cắt BH tại K
1) So sánh cung AB và cung AC
2) Cho ∠ADB = 550 Tính số đo cung BC
3) Chứng minh tứ giác AEHF nội tiếp
4)Chứng minh MN//EF
5) Chứng minh HE.KB = EF.KD
6*) Cho BC cố định, A chạy trên cung lớn BC. Chứng minh độ dài AH; EF không đổi
1: AB<AC
=>góc C<góc B
Xét (O) có
góc ACB=1/2*sđ cung AB
góc ABC=1/2*sđ cung AC
mà góc ACB<góc ABC
nên sđ cung AB<sđ cung AC
3: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
4:
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc HFE=góc HBC
=>góc HFE=góc HNM
mà hai góc này ở vị trí đồng vị
nên FE//MN
Cho tam giác ABC nội tiếp đường tròn O . Ba đường cao AD , BE,,CF cắt nhau tại H . kéo dài AO cắt đường tròn tâm O tại M ,AD cắt đường tròn tâm O tại K . cmr
a) MK//BC
b) DH=DK
c) Gọi I là trung điểm của BC. Cmr H,M,I thẳng hàng
d) AD/HD+BE/HE+CF/HF≥9
Bài V:
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE, CF cắt nhau tại H; AH cắt EF tại I.
a) Chứng minh: D ABE và D ACF đồng dạng; D AEF và D ABC đồng dạng.
b) Vẽ FK ^ BC tại K. Chứng minh: AC.AE = AH.AD và CH.DK = CD.HF.
c) Chứng minh: . EI/ED = HI/HD
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.
Chứng minh: góc BME + góc BNE = 180o
Cho tam giác ABC có 3 góc nhọn nội tiếp (O;R). Các đường cao AD, BE, CF cắt nhau tại H. Các đường thẳng BE và CF cắt đường tròn (O;R) tại Q và K. Gọi I là trung điểm BC, chứng minh I thuộc đường trong ngoại tiếp tam giác DEF
xét tứ giác BFHD có
góc BFH + góc BDH = 180
mà nó là 2 góc đối => nội tiếp => góc FDH = góc FBE
chứng minh tương tự với tứ giác CEHD
=> góc HDE = góc HCE
Xét tứ giác BFEC có
góc BFC = góc BEF = 90
mà nó là 2 góc kề => tứ giác nội tiếp
mà góc BEC = 1/2 sđ BC = 90 => SĐ BC = 180 => BC là đường kính mà I là trung điểm BC => I là tâm đường tròn ngoại tiếp tứ giác BFEC
=> góc FIE = góc FBE + góc FCE
=> Góc FIE = góc FDH+góc HDE => góc FIE = góc FDE
mà nó là 2 góc kề => nội tiếp
=> điều phải cm
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. Chứng minh BF.BA+ CE.CA= BC^2?
-Xét △BCF và △BAD có:
\(\widehat{ABC}\) là góc chung
\(\widehat{BFC}=\widehat{BDA}=90^0\)
\(\Rightarrow\)△BCF∼△BAD (g-g).
\(\Rightarrow\dfrac{BC}{BA}=\dfrac{BF}{BD}\) (tỉ số đồng dạng)
\(\Rightarrow BF.BA=BC.BD\left(1\right)\)
-Xét △ACD và △BCE có:
\(\widehat{ACB}\) là góc chung
\(\widehat{ADC}=\widehat{BEC}=90^0\)
\(\Rightarrow\)△ACD∼△BCE (g-g)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CD}{CE}\) (tỉ số đồng dạng)
\(\Rightarrow CE.CA=CD.BC\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BF.BA+CE.CA=BD.BC+CD.BC=BC\left(BD+CD\right)=BC.BC=BC^2\)