Cho tam giác ABC nhọn nội tiếp (O;R). Đường cao AD, BE, CF cắt nhau tại H. CMR : \(S_{ABC}=\dfrac{AB\cdot AC\cdot BC}{4R}\)
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O;R) (AB<AC) 3 đường cao AD,BE,CF cắt nhau tại H
a,CM tứ giác BFEC nội tiếp và xác định tâm I
b,Đường thẳng EF cắt đường thẳng BC tại K . CM KF.KE=KB.KC
c,AK cắt (O) tại M. CM MFEA nội tiếp
jup mình vs ạ
Cho tam giác ABC có 3 híc nhọn nội tiếp (O;R) (AB < AC) ba đường cao AD,BE,CF cắt nhau tại H.Đường thẳng EF cắt BC tại K 1.Cm AEHF là tứ giác nội tiếp 2.Cm DB.DC = DH.DA
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn(O).
Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. CMR:
a/. Các tứ giác AEHF, BCEF nội tiếp
b/ AD.BC = BE AC
c/. CMR BHM cân
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O) có 3 đường cao AD, BE, CF cắt nhau tại H. Tia AD cắt (O) tại K.
a) Chứng minh tam giác BHK cân rồi suy ra BC là trung trực của HK
b) Vẽ đường kính AM của (O). Chứng minh: tam giác ABD đồng dạng tam giác AMC và OA vuông góc EF tại Q
c) Chứng minh AQ.AM=AE.AC và tứ giác QHDM nội tiếp.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H. AO cắt BC tại M. P, Q lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Chứng minh:
a/ H là tâm đường tròn nội tiếp tam giác DEF
b/ HE.MQ= HF. MP
c/ \(\dfrac{MB}{MC}.\dfrac{DB}{DC}=\left(\dfrac{AB}{AC}\right)^2\)
Cho tam giac ABC có 3 góc nhọn ( AB<AC ) nội tiếp (O) . Các đường cao AD , BE , CF cắt nhau tại H . C/m : tứ giác BDEF nội tiếp
Cho tam giác ABC (AB<AC) có 3 góc nhọn nội tiếp đường tròn O bán kính R. Ba đường cao AD,BE,CF cắt nhau tại H. Gọi I là tâm đường tròn nội tiếp tam giác ABC, J là tâm đường tròn bàng tiếp góc A. Chứng minh: AI.AJ=AB.AC
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H. a) Chứng minh tứ giác AFHE là tứ giác nội tiếp. b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK