Xác định A giao B với
a, A=[1;5] , B=(-3;2) hợp (3;7)
Xác định các tập hợp \(A \cup B\) và \(A \cap B\) với
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.
b) A là tập hợp các tam giác đều, B là tập hợp các tam giác cân.
a) A = {đỏ; cam; vàng; lục; lam}, B = {lục; lam; chàm; tím}.
\(A \cup B = \){đỏ; cam; vàng; lục; lam; chàm; tím}
\(A \cap B = \){lục; lam}
b) Vì mỗi tam giác đều cũng là một tam giác cân nên \(A \subset B.\)
\(A \cup B = B,\;A \cap B = A.\)
Chú ý
Nếu \(A \subset B\) thì \(A \cup B = B,\;A \cap B = A.\)
a)\(\sqrt{4\left(a-3\right)^2}vớia\ge3\)
b)\(\sqrt{a^2\left(a+1\right)^2}vớia>0\)
c)\(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}vớia< 0,b\ne0\)
a) \(\sqrt{4\left(a-3\right)^2}=2\left(a-3\right)=2a-6\)
b) \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c) \(\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\dfrac{1}{\sqrt{8}\left|a\right|}=\dfrac{1}{-\sqrt{8}a}=\dfrac{-\sqrt{8}}{8a}\)
a: \(\sqrt{4\left(a-3\right)^2}=2\cdot\left(a-3\right)=2a-6\)
b: \(\sqrt{a^2\left(a+1\right)^2}=a\left(a+1\right)=a^2+a\)
c: \(\dfrac{\sqrt{16a^4b^6}}{\sqrt{128a^6b^6}}=\sqrt{\dfrac{16a^4b^6}{128a^6b^6}}=\sqrt{\dfrac{1}{8a^2}}=\sqrt{\dfrac{2}{16a^2}}=-\dfrac{\sqrt{2}}{4a}\)
Cho hình chóp S.ABCD. ABCD là hình bình hành tâm O.Gọi K, H là trung điểm SB, BD a) (SBD) giao với (SAC) = ? (SAC) giao với (KHC) = ? b) Xác định giao điểm I của SA giao với ( KHC) Xác định thiết diện của hình chóp cắt (KHC) c) Xác định giao điểm E của AB giao với ( KHC) d) Xác định giao điểm F của AD giao với (KHC) e) Tính SI/SA = ?
a: BD giao AC tại O
S thuộc (SBD) giao (SAC)
=>(SBD) giao (SAC)=SO
Gọi giao của SO và KH là G
\(\left\{{}\begin{matrix}G\in KH\subset\left(KHC\right)\\G\in SO\subset\left(SAC\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}C\in\left(KHC\right)\\C\in\left(SAC\right)\end{matrix}\right.\)
=>(KHC) giao (SAC)=CG
b: Chọn mp (SAC) có chứa SA
(SAC) giao (KHC)=CG
=>I=SA giao CG
c: Chọn mp (ABCD) có chứa AB
(ABCD) cắt (KHC)=HC
=>E=AB giao HC
1. Cho hàm số y = ax + 3 (d)
a/ Xác định a biết (d) đi qua A(1;-1). Vẽ đồ thị với a vừa tìm được..
b/ Xác định a biết đường thẳng (d) song song với đường thẳng y = 2x – 1(d’)
c/ Tìm tọa độ giao diểm của (d) và (d’) với a tìm được ở câu a bằng phép tính
a: Thay x=1 và y=-1 vào (d), ta được:
a+3=-1
hay a=-4
Cho hai đường thẳng được xác định bởi
(d1): y=3x+5m+2 và (d2): y=7x-3m-6
a) xác định tọa độ giao điểmA của (d1) và (d2) khi m=0
b) CMR khi m thay đổi giao điểm A luôn chạy trên 1 đường thẳng
Cho hai đường thẳng d1: y=1/2x+4 và d2:-x+4
a) Xác định các góc giữa d1,d2 với tia Ox ( làm tròn đến độ )
b) Xác định góc tạo bởi hai đường thẳng d1 và d2
c) Gọi giao điểm của d1,d2 vói trục hoành theo thứ tự là A,B và giao điểm của hai đường thẳng là C. Tính các góc của tam giác ABC
d) Tính chu vi và diện tích tam giác ABC ( đơn vị đo trên các trục toạ độ là centimet)
a) \(\left\{{}\begin{matrix}y=\dfrac{1}{2}x+4\left(d_1\right)\\y=-x+4\left(d_2\right)\end{matrix}\right.\)
Gọi \(\alpha=\left(d_1;ox\right)\) là góc tạo bởi đường thẳng d1 và ox
\(\Rightarrow tan\alpha=\dfrac{1}{2}\Rightarrow\alpha=27^o\)
Gọi \(\beta=\left(d_2;ox\right)\) là góc tạo bởi đường thẳng d2 và ox
\(\Rightarrow tan\beta=-1\Rightarrow\beta=-45^o\)
b) Hệ số góc của đường thẳng \(d_1\) là \(k_1=tan\alpha=\dfrac{1}{2}\)
Hệ số góc của đường thẳng \(d_2\) là \(k_2=tan\beta=-1\)
Góc tạo bởi 2 đường thẳng \(d_1;d_2\) là \(\varphi\)
\(tan\varphi=\left|\dfrac{k_1-k_2}{1+k_1.k_2}\right|=\left|\dfrac{\dfrac{1}{2}-\left(-1\right)}{1+\dfrac{1}{2}.\left(-1\right)}\right|=3\) \(\)
\(\Rightarrow\varphi=72^o\)
Áp dụng BĐT Bunhia
1. Chứng minh các BĐT sau
a. \(3a^2+4b^2\ge7,với3a+4b=7\)
b. \(3a^2+5b^2\ge\frac{735}{47},với2a-3a=7\)
c. \(7a^2+11b^2\ge\frac{2464}{137},với3a-5b=8\)
d. \(a^2+b^2\ge\frac{4}{5},vớia+2b=2\)
2. Chứng minh các BĐT sau
a. \(a^2+b^2\ge\frac{1}{2},vớia+b\ge1\)
b. \(a^3+b^3\ge\frac{1}{4},vớia+b\ge1\)
c.\(a^4+b^4\ge\frac{1}{8},vớia+b=1\)
d. \(a^4+b^4\ge2,vớia+b=2\)
Bài 1:
a)Áp dụng Bđt Bunhiacopski ta có:
\(3a^2+4b^2\ge\frac{\left(3a+4b\right)^2}{7}=7\)
b)Áp dụng Bđt Bunhiacopski ta có:
\(\left(3a^2+5b^2\right)\left[\left(\frac{2}{\sqrt{3}}\right)^2+\left(-\frac{3}{\sqrt{5}}\right)^2\right]\ge\left(2a-3b\right)^2=49\)
\(\Rightarrow3a^2+5b^2\ge\frac{735}{47}\)
c)Áp dụng Bđt Bunhiacopski ta có:
\(\left(7a^2+11b^2\right)\left[\left(\frac{3}{\sqrt{7}}\right)^2+\left(\frac{5}{\sqrt{11}}\right)^2\right]\ge\left(\frac{3}{\sqrt{7}}\cdot\sqrt{7}a-\frac{5}{\sqrt{11}}\cdot\sqrt{11}b\right)^2=64\)
\(\Rightarrow\frac{274}{77}\left(7a^2+11b^2\right)\ge64\)
\(\Rightarrow7a^2+11b^2\ge\frac{2464}{137}\)
d)Áp dụng Bđt Bunhiacopski ta có:
\(\left(1^2+2^2\right)\left(a^2+b^2\right)\ge\left(a+2b\right)^2=4\)
\(\Rightarrow a^2+b^2\ge\frac{4}{5}\)
a)Áp dụng Bđt Bunhiacopski ta có:
\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
phần khác tương tư
Cho hình chóp SABCD .Trong tam giác SCD lấy điểm M a)Xác định giao tuyến của : (SAC) và (SBM) b)xác định giao điểm của BM và (SAC) c) xác định thiết diện của hình chóp với (ABM) Giải giúp mình vs!! Câu c chi tiết xíu nha
Xác định các tập hợp A U B, A\C, A giao B, B giao C biết:
A = {x thuộc R| -2 ≤ x ≤ 2}
B = {x thuộc R| x ≥ 3}
C = (-∞;0)
\(A=\left\{x\in R|-2\le x\le2\right\}\)
\(B=\left\{x\in R|x\ge3\right\}\)
\(C=\left(-\infty;0\right)\)
\(A\cup B=\left[-2;2\right]\cup[3;+\infty)\)
\(A\)\\(C=\left[0;2\right]\)
\(A\cap B=\varnothing\)
\(B\cap C=\varnothing\)