tìm điều kiện của m để hàm số xác định trên [0;1)
y=\(\sqrt{x-m}+\sqrt{2x-m-1}\)
Cho hàm số y = (3 – m)x2a) Tìm điều kiện của m để hàm số trên được xác định.b) Xác định m để hàm số đồng biến với mọi x < 0.c) Xác định m để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0.
a, ĐKXĐ để hàm được xác định : \(3-m\ne0\)
\(\Leftrightarrow m\ne3\)
b, - Với x < 0 để hàm số đồng biến thì : \(3-m< 0\)
\(\Leftrightarrow m>3\)
Vậy ...
c, - Để y = 0 là giá trị nhỏ nhất của hàm số tại x = 0
\(\Leftrightarrow a>0\)
\(\Leftrightarrow3-m>0\)
\(\Leftrightarrow m< 3\)
Vậy ...
a) Để hàm số \(y=\left(3-m\right)x^2\) được xác định thì \(3-m\ne0\)
hay \(m\ne3\)
b) Để hàm số \(y=\left(3-m\right)x^2\) đồng biến với mọi x<0 thì \(3-m< 0\)
\(\Leftrightarrow m>3\)
c) Để y=0 là giá trị nhỏ nhất của hàm số tại x=0 thì 3-m>0
hay m<3
Cho hai hàm số bậc nhất: y= 3x +5 và y = mx - 5
a. Xác định hệ số a,b của hai hàm số trên?
b. Tìm điều kiện của m để đồ thị hai hàm số trên song song với nhau.
c. Tìm điều kiện của m để đồ thị hai hàm số trên cắt với nhau.
b: Để hai hàm só song song thì m=5
Tìm điều kiện của tham số m để hàm số f(x) xác định
Tìm điều kiện của tham số m để hàm số \(y=\sqrt{2m-3sinx}\) có tập xác định là R
ĐKXĐ: 2m-3sinx>=0
=>3sin x<=2m
=>sin x<=2m/3
mà -1<=sin x<=1
nên -1<=2m/3<=1
=>-3<=2m<=3
=>-3/2<=m<=3/2
Tìm điều kiện của tham số m để hàm số sau có tập xác định là R
\(y=\dfrac{1}{\sqrt{2sin3x+2cos3x-m}}\)
Hàm xác định trên R khi với mọi x ta có:
\(2sin3x+2cos3x-m>0\)
\(\Leftrightarrow sin3x+cos3x>\dfrac{m}{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(3x+\dfrac{\pi}{4}\right)>\dfrac{m}{2}\)
\(\Rightarrow\dfrac{m}{2\sqrt{2}}< \min\limits_Rsin\left(3x+\dfrac{\pi}{4}\right)=-1\)
\(\Rightarrow m< -2\sqrt{2}\)
cho hàm số y = (2m - 1)x + 1
a) Tìm điều kiện của m để hàm số là hàm số bậc nhất
b) Tìm điều kiện của m để hàm số đồng biến trên R
a.
Hàm là hàm số bậc nhất khi:
\(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\)
b.
Hàm đồng biến trên R khi:
\(2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)
a) Để hàm số là hàm số bậc nhất thì \(2m-1\ne0\)
hay \(m\ne\dfrac{1}{2}\)
b) Để hàm số đồng biến thì 2m-1>0
hay \(m>\dfrac{1}{2}\)
Tìm điều kiện của tham số m để hàm số sau có tập xác định là R
\(y=\dfrac{sin3x}{\sqrt{sin^6x+cos^6x+msinxcosx}}\)
Hàm xác định trên R khi với mọi x ta có:
\(sin^6x+cos^6x+m.sinx.cosx>0\)
\(\Leftrightarrow1-\dfrac{3}{4}sin^22x+\dfrac{m}{2}sin2x>0\)
\(\Leftrightarrow3sin^22x-2m.sin2x-4< 0\)
Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow3t^2-2mt-4< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3.f\left(-1\right)< 0\\3.f\left(1\right)< 0\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2m-1< 0\\-2m-1< 0\end{matrix}\right.\)
\(\Rightarrow-\dfrac{1}{2}< m< \dfrac{1}{2}\)
cho hàm số y=mx+m-3 (d)
a) điều kiện của m để hàm số trên là hàm số bậc nhất
b) xác định m biết (d) có tung độ gốc bằng 5
c) xác định m biết (d) đi qua K(-2;8)
d) vẽ (d) với m bằng 1
với mọi m thì hàm số trên đều là hàm số bậc nhất
Cho hàm số y=f(x) xác định, liên tục trên R\{1} và có bảng biến thiên như sau
Tìm điều kiện m để phương trình f(x)=m có 3 nghiệm phân biệt
A. m< 0
B. m> 0
C. 0<m<27/4
D. m>27/4
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]