Trong các điểm \(A\left(6;-2\right),B\left(-2;-10\right),C\left(1;1\right),D\left(-\dfrac{1}{3};1\dfrac{2}{3}\right),E\left(0;0\right)\) có những điểm nào thuộc đồ thị của hàm số :
a) \(y=-\dfrac{1}{3}x\)
b) \(y=5x\)
Viết PT của đường thẳng đi qua hai điểm A, B trong các trường hợp:
a) A\(\left(3;2\right)\), B\(\left(-1;-5\right)\) b) A\(\left(-3;1\right)\); B\(\left(1;-6\right)\)
a.
\(\overrightarrow{BA}=\left(4;7\right)\Rightarrow\) đường thẳng AB nhận (4;7) là 1 vtcp
Phương trình tham số AB: \(\left\{{}\begin{matrix}x=3+4t\\y=2+7t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(4;-7\right)\) \(\Rightarrow\) đường thẳng AB nhận (4;-7) là 1 vtcp
Phương trình AB: \(\left\{{}\begin{matrix}x=-3+4t\\y=1-7t\end{matrix}\right.\)
Cho đường thẳng (d) y = ax + b. Tìm các giá trị của a, b trong trường hợp sau:
(d) đi qua điểm \(A=\left(\sqrt{3}-\sqrt{2};1-\sqrt{6}\right)\) và \(B\left(\sqrt{2};2\right)\)
\(A\left(\sqrt{3}-\sqrt{2};1-\sqrt{6}\right)\in\left(d\right)\\ \Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)a+b=1-\sqrt{6}\left(1\right)B\left(\sqrt{2};2\right)\in\left(d\right)\\ \Leftrightarrow a\sqrt{2}+b=2\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a\sqrt{3}-a\sqrt{2}+b=1-\sqrt{6}\\a\sqrt{2}+b=2\end{matrix}\right.\)
Lấy 2 PT trừ nhau
\(\Leftrightarrow a\left(2\sqrt{2}-\sqrt{3}\right)=1+\sqrt{6}\\ \Leftrightarrow a=\dfrac{\sqrt{6}+1}{2\sqrt{2}-\sqrt{3}}=\dfrac{\left(\sqrt{6}+1\right)\left(2\sqrt{2}+\sqrt{3}\right)}{8-3}\\ \Leftrightarrow a=\dfrac{11\sqrt{2}+\sqrt{3}}{5}\\ \Leftrightarrow b=2-a\sqrt{2}=\dfrac{10-\sqrt{2}\left(11\sqrt{2}+\sqrt{3}\right)}{5}\\ \Leftrightarrow b=\dfrac{-12-\sqrt{6}}{5}\)
Trong mặt phẳng tọa độ Oxy, cho các vectơ \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j ,\)\(\overrightarrow b = \left( {4; - 1} \right)\) và các điểm M (-3; 6), N(3; -3).
a) Tìm mối liên hệ giữa các vectơ \(\overrightarrow {MN} \) và \(2\;\overrightarrow a - \overrightarrow b \).
b) Các điểm O, M, N có thẳng hàng hay không?
c) Tìm điểm P(x; y) để OMNP là một hình bình hành.
Tham khảo:
a) Ta có: \(\overrightarrow b = \left( {4; - 1} \right)\) và \(\overrightarrow a = 3.\overrightarrow i - 2.\overrightarrow j \;\; \Rightarrow \;\overrightarrow a \;\left( {3; - 2} \right)\)
\( \Rightarrow 2\;\overrightarrow a - \overrightarrow b = \left( {2.3 - 4\;;\;2.\left( { - 2} \right) - \left( { - 1} \right)} \right) = \left( {2; - 3} \right)\)
Lại có: M (-3; 6), N(3; -3)
\( \Rightarrow \overrightarrow {MN} = \left( {3 - \left( { - 3} \right); - 3 - 6} \right) = \left( {6; - 9} \right)\)
Dễ thấy:\(\left( {6; - 9} \right) = 3.\left( {2; - 3} \right)\) \( \Rightarrow \overrightarrow {MN} = 3\left( {2\;\overrightarrow a - \overrightarrow b } \right)\)
b) Ta có: \(\overrightarrow {OM} = \left( { - 3;6} \right)\) ( do M(-3; 6)) và \(\overrightarrow {ON} = \left( {3; - 3} \right)\) (do N (3; -3)).
Hai vectơ này không cùng phương (vì \(\frac{{ - 3}}{3} \ne \frac{6}{{ - 3}}\)).
Do đó các điểm O, M, N không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
c) Các điểm O, M, N không thẳng hàng nên OMNP là một hình hành khi và chỉ khi \(\overrightarrow {OM} = \overrightarrow {PN} \).
Do \(\overrightarrow {OM} = \left( { - 3;6} \right),\;\overrightarrow {PN} = \left( {3 - x; - 3 - y} \right)\) nên
\(\overrightarrow {OM} = \overrightarrow {PN} \Leftrightarrow \left\{ \begin{array}{l} - 3 = 3 - x\\6 = - 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = - 9\end{array} \right.\)
Vậy điểm cần tìm là P (6; -9).
Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y = - 5x + 5\)?
A. \(\left( {1;1} \right)\). B. \(\left( {2;0} \right)\). C. \(\left( {0;4} \right)\). D. \(\left( {2; - 5} \right)\).
Đáp án đúng là D
+ Xét điểm \(\left( {1;1} \right)\) ta có: \(y = - 5.1 + 5 = 0 \ne 1\). Do đó, điểm \(\left( {1;1} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {2;0} \right)\) ta có: \(y = - 5.2 + 5 = - 5 \ne 0\). Do đó, điểm \(\left( {2;0} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {0;4} \right)\) ta có: \(y = - 5.0 + 5 = 5 \ne 4\). Do đó, điểm \(\left( {0;4} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {2; - 5} \right)\) ta có: \(y = - 5.2 + 5 = - 5\). Do đó, điểm \(\left( {2; - 5} \right)\) thuộc đồ thị hàm số.
Trong các điểm sau, điểm nào thuộc đồ thị của hàm số \(y = 2 - 4x\)?
A. \(\left( {1;1} \right)\). B. \(\left( {2;0} \right)\). C. \(\left( {1; - 1} \right)\). D. \(\left( {1; - 2} \right)\).
Đáp án đúng là D
+ Xét điểm \(\left( {1;1} \right)\) ta có: \(y = 2 - 4.1 = - 2 \ne 1\). Do đó, điểm \(\left( {1;1} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {2;0} \right)\) ta có: \(y = 2 - 4.2 = - 6 \ne 2\). Do đó, điểm \(\left( {2;0} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {1; - 1} \right)\) ta có: \(y = 2 - 4.1 = - 2 \ne - 1\). Do đó, điểm \(\left( {1; - 1} \right)\)không thuộc đồ thị hàm số.
+ Xét điểm \(\left( {1; - 2} \right)\) ta có: \(y = 2 - 4.1 = - 2\). Do đó, điểm \(\left( {1; - 2} \right)\) thuộc đồ thị hàm số.
Thế lần lượt chọn ý D
Bài 1: Cho 6 điểm trên mặt phẳng, trong đó không có 3 điểm nào thẳng hàng. Ta đánh số các điểm trên bằng các chữ số từ 1 đến 6. (ta có các điểm 1; 2; 3; 4; 5; 6)
a) Hỏi có bao nhiêu tam giác khác nhau được xác định mà đỉnh của nó là 3 trong 6 điểm nói trên?
b) Tìm tam giác có tổng số điểm ở 3 đỉnh là nhỏ nhất, lớn nhất.
Bài 2: Tìm các số tự nhiên a và b, biết: \(\frac{1}{a}-\frac{1}{b}=\frac{2}{143}\)biết b-a= 2
Bài 3:\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185.8\)
Bài 2:
Ta có : 1/a-1/b=b-a/a.b
suy ra:b-a=2
và:b.a=143
Vì b-a=2 nên suy ra a và b là 2 số chẵn hoặc lẻ liên tiếp mà chẵn nhân chẵn luôn bằng chẵn;lẻ nhân lẻ luôn bằng lẻ. Vậy a và b là hai số lẻ liên tiếp.
Ta có:143=1.143 (loại)
=11.13 (phù hợp)
Vậy:a=11;b=3
Trong mặt phẳng Oxy, cho ba điểm \(D\left( { - 1;4} \right),E\left( {0; - 3} \right),F\left( {5;0} \right)\)
a) Vẽ các điểm D, E, F trên mặt phẳng Oxy
b) Tìm tọa độ của các vectơ \(\overrightarrow {OD} ,\overrightarrow {OE} ,\overrightarrow {OF} \).
c) Vẽ và tìm tọa độ hai vectơ đơn vị và \(\overrightarrow j \)lần lượt trên hai trục tọa độ Ox và Oy
a)
b) Vì tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ của điểm M (với mọi M) nên ta có:
\(\overrightarrow {OD} = \left( { - 1;4} \right),\overrightarrow {OE} = \left( {0; - 3} \right),\overrightarrow {OF} = \left( {5;0} \right)\)
c)
Từ hình vẽ ta có tọa độ của hai vectơ và \(\overrightarrow j \)là
và \(\overrightarrow j = (0;1)\)
Trong không gian Oxyz, cho bốn điểm \(A\left(6;-2;3\right),B\left(0;1;6\right),C\left(2;0;-1\right),D\left(4;1;0\right)\). Gọi (S) là mặt cầu đi qua 4 điểm A, B, C, D. Hãy viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A ?
10. Viết pt đường thẳng \(d\) trong các trường hợp sau:
a. \(d\) đi qua 2 điểm \(A,B\) với \(A\left(1;3\right)\) và \(B\left(2;4\right)\)
b.\(d\) đi qua 2 điểm \(C,D\) với \(C\left(-3;2\right)\) và \(D\left(2;3\right)\)
a: (d): y=ax+b
Theo đề, ta có hệ:
a+b=3 và 2a+b=4
=>a=1 và b=2
b: Theo đề, ta có hệ:
-3a+b=2 và 2a+b=3
=>a=1/5 và b=13/5