Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Mi
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 11:09

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

Hà Mi
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 8 2021 lúc 20:07

Hàm nhận \(x=3\) là tiệm cận đứng và \(y=1\) là tiệm cận ngang

Gọi \(M\left(a;b\right)\Rightarrow b=\dfrac{a+2}{a-3}\)

Khoảng cách đến tiệm cận đứng: \(\left|x_M-3\right|=\left|a-3\right|\)

Khoảng cách đến tiệm cận ngang: \(\left|y_M-1\right|=\left|b-1\right|\) 

Ta có hệ: \(\left\{{}\begin{matrix}b=\dfrac{a+2}{a-3}\\\left|b-1\right|=5\left|a-3\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;6\right)\\M\left(2;-4\right)\end{matrix}\right.\) có 2 điểm

bùi phương anh
Xem chi tiết
Jang Ha Na
2 tháng 11 2015 lúc 13:38

dễ

bùi phương anh
5 tháng 11 2015 lúc 23:20

chỉ tui với

Phạm Thị Bích Thạch
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:23

Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)

Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow\Delta=1>0\) với mọi m

Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)

Theo giả thiết ta có :

                         \(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

quynhu
Xem chi tiết
tiểu thư song ngư
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:53

Ta có: 

\(\left\{ {\begin{array}{*{20}{l}}
{x = 5 + 3t}\\
{y = - 5 - 4t}
\end{array}} \right. \Rightarrow 4x + 3y = 4(5 + 3t) + 3( - 5 - 4t) = 5\)

Phương trình tổng quát của \(\Delta \) là \(4x + 3y - 5 = 0\)

Khoảng cách từ M đến đường thẳng \(\Delta \) là \(d\left( {M,\Delta } \right) = \frac{{\left| {4.1 + 3.2 - 5} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 1\).

Lê Ngọc Toàn
Xem chi tiết
Thu Hiền
26 tháng 3 2016 lúc 9:11

Gọi tọa độ điểm cực đại là A(0;2), điểm cực tiểu B (2;-2)

Xét biểu thức P=3x-y-2

Thay tọa độ điểm A (0;2) => P=-4<0, thay tọa độ điểm B (2;-2) => P=6>0

Vậy 2 điểm cực đại và cực tiểu nằm về 2 phía của đường thẳng y=3x-2.

Để MA+MB nhỏ nhất => 3 điểm A,M,B thẳng hàng

Phương trình đường thẳng AB : y =-2x+2

Tọa độ điểm M là nghiệm của hệ :

\(\begin{cases}y=3x-2\\y=-2x+2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{4}{5}\\y=\frac{2}{5}\end{cases}\) \(\Leftrightarrow M\left(\frac{4}{5};\frac{2}{5}\right)\)

Phạm Phương Anh
Xem chi tiết
Trần Minh Hưng
9 tháng 11 2016 lúc 20:23

Bài 1:

Nửa quãng đường AB( hay M cách A, B) dài là:

540:2=270(km)

Gọi quãng đường ô tô và xe máy đã đi lần lượt là S1; S2 (km) và t (giờ) là thời gian cần tìm.

Trong cùng 1 thời gian đi thì quãng đường tỉ lệ thuận với vận tốc.

\(\Rightarrow\frac{S_1}{65}=\frac{S_2}{40}=t\)

Ta có:

\(S_1=\frac{1}{2}\cdot S_2\)

\(\Rightarrow t=\frac{270-a}{65}=\frac{540-2a}{130}=\frac{270-2a}{40}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(t=\frac{540-2a}{130}=\frac{270-2a}{40}=\frac{\left(540-2a\right)-\left(270-2a\right)}{130-40}=\frac{270}{90}=3\)

Vậy sau khi khởi hành 3 giờ thì ô tô cách M 1 khoảng bằng \(\frac{1}{2}\) khoảng cách từ xe máy đến M.