Cho \(\Delta:3x+4y-2=0\)
a) Viết PTTQ của d, biết d//\(\Delta\) và đi qua M(1;-2)
b) Viết PTTS của \(\Delta\)
c) Tìm M\(\in\Delta_2\):\(\left\{{}\begin{matrix}x=1-3t\\y=2+5t\end{matrix}\right.\) sao cho d(M;\(\Delta\))=5
Trong Oxy cho M(1;4) N(-3;-5) P(3;-4) và đường thẳng d: 3x-4y+6=0 a) Viết phương trình đường thẳng delta đi qua M và song song với d b) Viết phương trình đường thẳng delta đi qua N và vuông góc với d
a: Vì Δ//d nên Δ: 3x-4y+c=0
Thay x=1 và y=4 vào Δ, ta được:
c+3-16=0
=>c=13
b: Vì Δ vuông góc d nên Δ: 4x+3y+c=0
Thay x=-3 và y=-5 vào Δ, ta được:
c+4*(-3)+3(-5)=0
=>c-27=0
=>c=27
=>4x+3y+27=0
Cho \(\Delta\): 4x-3y+1=0
a) Viết PTTQ của d, biết d//\(\Delta\) và đi qua N(0;5)
b) Viết PTTS của \(\Delta\)
c) Tìm M\(\in\)\(\Delta_2\):\(\left\{{}\begin{matrix}x=2+t\\y=-1-3t\end{matrix}\right.\) sao cho d (M;\(\Delta\))=4
a.
Gọi \(M\left(x;y\right)\in d\)
\(\Rightarrow d\left(M;\Delta\right)=3\Leftrightarrow\dfrac{\left|3x-4y+6\right|}{\sqrt{3^2+4^2}}=3\)
\(\Leftrightarrow\left|3x-4y+6\right|=15\Rightarrow\left[{}\begin{matrix}3x-4y+21=0\\3x-4y-9=0\end{matrix}\right.\)
b.
Giả sử đường thẳng (d2) có dạng \(a\left(x+2\right)+b\left(y-3\right)=0\Leftrightarrow ax+by+2a-3b=0\) (1)
\(\dfrac{\left|3.a-4b\right|}{5\sqrt{a^2+b^2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow2\left(3a-4b\right)^2=25a^2+25b^2\)
\(\Leftrightarrow7a^2+48ab-7b^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7a=b\\a=-7b\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(1;7\right);\left(7;-1\right)\)
\(\Rightarrow...\) (bạn tự thế vào (1) và rút gọn)
Viết pt đường thẳng \(\Delta\)
a) Viết pt đường thẳng d Đi qua \(M\left(1;\dfrac{1}{2}\right)\) và song song với \(\Delta\) biết \(\Delta\)trùng với Ox
b)Viết pt đường thẳng d Đi qua \(M\left(3;4\right)\) và vuông góc với \(\Delta\) biết \(\Delta\) trùng với Ox
c )Viết pt đường thẳng d Đi qua \(M\left(-1;2\right)\) và vuông góc với \(\Delta\) biết \(\Delta\) trùng với Oy
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
Lập phương trình tham số của đường thẳng \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\) và song song với đường thẳng \(d:3x - 4y - 1 = 0\).
Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }} = \overrightarrow {{n_d}} = \left( {3; - 4} \right)\).
Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:
\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).
Cho ΔABC có A(2;-1), B(4;2) , C(-2;2)
a,Viết PTTQ cạnh AB
b, Viết PTTQ của đường cao CH
c, Viết PTTQ của đường thẳng qua A và song song với BC
d, Viết phương trình phân giác trong của góc A của ΔABC
\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận \(\left(3;-2\right)\) là 1 vtpt
Phương trình AB:
\(3\left(x-2\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-8=0\)
b/ \(CH\perp AB\Rightarrow\) đường thẳng CH nhận \(\left(2;3\right)\) là 1 vtpt
Phương trình CH:
\(2\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow2x+3y-2=0\)
c/ \(\overrightarrow{BC}=\left(-6;0\right)=-6\left(1;0\right)\) ,đường thẳng d song song BC nên nhận \(\left(0;1\right)\) là 1 vtpt
Phương trình d:
\(0\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)
d/ Gọi \(\overrightarrow{AC}=\left(-4;3\right)\Rightarrow\) phương trình AC có dạng:
\(3\left(x-2\right)+4\left(y+1\right)=0\Leftrightarrow3x+4y-2=0\)
Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác góc A \(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)
\(\Leftrightarrow\frac{\left|3x-2y-8\right|}{\sqrt{3^2+2^2}}=\frac{\left|3x+4y-2\right|}{\sqrt{3^2+4^2}}\Leftrightarrow\left|15x-10y-40\right|=\left|3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}15x-10y-40=3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\\15x-10y-40=-3\sqrt{13}x-4\sqrt{13}y+2\sqrt{13}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(15-3\sqrt{13}\right)x-\left(10+4\sqrt{13}\right)y-40+2\sqrt{13}=0\\\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\end{matrix}\right.\)
Thay tọa độ B, C vào 2 pt thì chỉ pt bên dưới cho kết quả trái dấu, vậy pt đường phân giác trong góc A là:
\(\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\)
trong mặt phẳng toạ độ Oxy cho 3 điểm A(0,9) , B(9,0), C( 3,0)
a) viết pttq đường thẳng d đi qua C và vuông góc AB
b) Xác định toạ độ tâm I của đường tròn ngoại tiếp tam giác ABC
c)tìm toạ độ điểm M thuộc đường thẳng x-2y-1=0 sao cho S\(\Delta ABC=15\)
Cho đường thẳng delta: 3x-4y-5=0
a) Viết phương trình đường thẳng d1 đi qua A(3;1) và vuông góc với delta
b) Viết phương trình đường thẳng d2 song song với delta và cách điểm M(2;-1) một đoạn bằng 1
a/ Do d1 vuông góc \(\Delta\) nên d1 nhận \(\left(4;3\right)\) là 1 vtpt
Phương trình d1:
\(4\left(x-3\right)+3\left(y-1\right)=0\Leftrightarrow4x+3y-15=0\)
b/ Do d2 song song \(\Delta\) nên pt d2 có dạng: \(3x-4y+c=0\)
Áp dụng công thức khoảng cách ta có:
\(\frac{\left|3.2-4\left(-1\right)+c\right|}{\sqrt{3^2+4^2}}=1\)
\(\Leftrightarrow\left|c+10\right|=5\Rightarrow\left[{}\begin{matrix}c=-5\\c=-15\end{matrix}\right.\)
Phương trình d2: \(\left[{}\begin{matrix}3x-4y-5=0\\3x-4y-15=0\end{matrix}\right.\)