Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vũ đăng khoa

Cho ΔABC có A(2;-1), B(4;2) , C(-2;2)

a,Viết PTTQ cạnh AB

b, Viết PTTQ của đường cao CH

c, Viết PTTQ của đường thẳng qua A và song song với BC

d, Viết phương trình phân giác trong của góc A của ΔABC

Nguyễn Việt Lâm
24 tháng 4 2020 lúc 9:35

\(\overrightarrow{AB}=\left(2;3\right)\Rightarrow\) đường thẳng AB nhận \(\left(3;-2\right)\) là 1 vtpt

Phương trình AB:

\(3\left(x-2\right)-2\left(y+1\right)=0\Leftrightarrow3x-2y-8=0\)

b/ \(CH\perp AB\Rightarrow\) đường thẳng CH nhận \(\left(2;3\right)\) là 1 vtpt

Phương trình CH:

\(2\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow2x+3y-2=0\)

c/ \(\overrightarrow{BC}=\left(-6;0\right)=-6\left(1;0\right)\) ,đường thẳng d song song BC nên nhận \(\left(0;1\right)\) là 1 vtpt

Phương trình d:

\(0\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)

d/ Gọi \(\overrightarrow{AC}=\left(-4;3\right)\Rightarrow\) phương trình AC có dạng:

\(3\left(x-2\right)+4\left(y+1\right)=0\Leftrightarrow3x+4y-2=0\)

Gọi \(M\left(x;y\right)\) là điểm thuộc phân giác góc A \(\Rightarrow d\left(M;AB\right)=d\left(M;AC\right)\)

\(\Leftrightarrow\frac{\left|3x-2y-8\right|}{\sqrt{3^2+2^2}}=\frac{\left|3x+4y-2\right|}{\sqrt{3^2+4^2}}\Leftrightarrow\left|15x-10y-40\right|=\left|3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}15x-10y-40=3\sqrt{13}x+4\sqrt{13}y-2\sqrt{13}\\15x-10y-40=-3\sqrt{13}x-4\sqrt{13}y+2\sqrt{13}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(15-3\sqrt{13}\right)x-\left(10+4\sqrt{13}\right)y-40+2\sqrt{13}=0\\\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\end{matrix}\right.\)

Thay tọa độ B, C vào 2 pt thì chỉ pt bên dưới cho kết quả trái dấu, vậy pt đường phân giác trong góc A là:

\(\left(15+3\sqrt{13}\right)x-\left(10-4\sqrt{13}\right)y-40-2\sqrt{13}=0\)


Các câu hỏi tương tự
vũ đăng khoa
Xem chi tiết
Hoàng Mai Trần
Xem chi tiết
Đặng Ngọc Đăng Thy
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
Mộc Miên
Xem chi tiết
Duy Trần
Xem chi tiết
Hà Như Thuỷ
Xem chi tiết
Trần Đông
Xem chi tiết
Phúc Nguyễn
Xem chi tiết