Bài 8*: Tìm các cặp số nguyên a ; b sao cho
a) ab – 7b + 5a = 0 ( với b > hoặc bằng 3 )
3 ) b) 7a – ab + 2b = 18
Bài 1 : Tìm các cặp số nguyên x , y sao cho x = 6y và | x | - | y | = 60
Bài 2 : Tìm các cặp số nguyên a, b sao cho a khác b và | a | + | b | <2
Bài 3 : Cho dãy số 1 ; -2 ; 3 ; -4 ; 5 ; -6 ; 7 ; -8 ; 9 ; -10 . Chọn ra 3 số rồi đặt dấu cộng , dấu trừ giữi các số ấy . Tính ra giá trị nhỏ nhất và lớn nhất của số đó
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 1: Tìm số nguyên χ biết:
a) (χ+3)(χ+2)=0
b) (7-3χ)3=(-8)
Bài 2: Tìm tất cả các số nguyên x;y;z;t biết:
|x+y+z+9|=|y+z+t+6|=|z+t+x-9|=|t+x+y-6|=0
Bài 3: Tìm ba cặp số nguyên (a;b) sao cho 20a+10b=2010
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Bài 3
20a + 10b = 2010
10b = 2010 - 20a
b = (2010 - 20a) : 10
*) a = 0
b = (2010 - 20.0) : 10 = 201
*) a = 1
b = (2010 - 10.1) : 10 = 200
*) a = 2
b = (2010 - 10.2) : 10 = 199
Vậy ta có ba cặp số nguyên (a; b) thỏa mãn:
(0; 201); (1; 200); (2; 199)
Bài 3*: Tìm các cặp số nguyên (x;y) thỏa mãn xy2 + 2x – y2 =8
Lời giải:
$xy^2+2x-y^2=8$
$(xy^2-y^2)+(2x-2)=6$
$y^2(x-1)+2(x-1)=6$
$(y^2+2)(x-1)=6$
Vì $y^2+2\geq 0+2=2$ và $y^2+2, x-1$ là các số nguyên nên ta có bảng sau:
Bài 1 : Tìm tất cả số nguyên n để \(A=n^2+6n+8\) là số nguyên tố
Bài 2 : Các cặp số nguyên ( x,y ) thỏa mãn biểu thức : x + y + xy = 2
Bài 3 : Tìm số chia và số dư biết rằng số bị chia bằng 112 và thương bằng 5 . Kết quả của số chia và số dư là ?
B1: n2 + 6n + 8 = n2 + 4n + 2n + 8 = n(n+4) + 2(n+4) = (n+2)(n+4)
Vì n+2 < n+4 => n + 2 = 1 => n = -1
=> A = 3 nguyên tố, thoả
B2: x + y + xy = 2
=> x(y+1) + (y+1) = 3
=> (x+1)(y+1) = 3
Ta có:
x+1 | 1 | 3 | -1 | -3 |
y+1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 2 | 0 | -4 | -2 |
Vậy (x,y) = .....................
B3: a : b = c dư r
=> 112 : b = 5 dư r
=> 112 : 5 = b dư r
=> 112 - r chia hết cho 5 và r < 5
=> r = 2 => b = 22
Bài 1: Tìm a, b thuộc tập hợp số nguyên biết a,b=24 và a+b=-10
Bài 2; Tìm tất cả các cặp số nguyên sao cho tổng bằng tích
Bài 1:Tìm các cặp số (x, y) nguyên biết :
a,6xy + 4x - 3y = 8 b,2xy - x + 2y - 13 = 0 c,2xy - 6X + 3 + y - 13 = 0
giúp mình với
mình cảm ơn
6xy+4x-3y=8
=> 6xy -3y=8-4x
=>3y(2x-1)= -2(2x-1) +6
=>(2x-1)(3y+2)=6
mà x,y thuộc Z =>(2x-1),(3y+2) thuộc Z =>(2x-1),(3y+2) thuộc U(6) xong giải ra bình thường nhé mấy câu sau tương tự
Bài 1 .a) hãy lập các cặp phân số bằng nhau từ đẳng thức:
(-4).6=3.(-8)
b) lập các cặp phân số bằng nhau từ các số :
2; 3 ;-6; -4 ;9
Bài 2. Tìm các số nguyên n sao cho phân số sau có giá trị là số nguyên : 3 phần n+7
Tìm các cặp số nguyên dương (a,b), biết: 3a - b + ab = 8
\(3a-b+ab=8\)
\(\Rightarrow\) \(a\left(b+3\right)-\left(b+3\right)=5\)
\(\Rightarrow\) \(\left(a-1\right)\left(b+3\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Lập bảng, ta tìm được a = 2, b = 2
3a-b+ab=8
⇒a(3+b)-b=8
⇒a(3+b)-3-b+3=8
⇒a(3+b)-(3+b)=5
⇒(a-1)(3+b)=5
ta có bảng:
a-1 | -1 | -5 | 1 | 5 | |
3+b | -5 | -1 | 5 | 1 | |
a | 0 | -4 | 2 | 6 | |
b | -8 | -4 | 2 | -2 |
Vậy (a,b)∈{(-1;-5);(-4;-4);(2;2);(6;-2)}
Bài 3. Tìm các cặp số nguyên dương a, b thỏa mãn
UCLN (a, b) = 15, BCNN (a, b)= 2835
Lời giải:
Gọi $d$ là ƯCLN của $a$ và $b$. Khi đó $a=dx, b=dy$ với $x,y$ nguyên dương và nguyên tố cùng nhau
Ta có:
$d=15$
BCNN$(a,b)=dxy=2835$
$\Rightarrow xy=189$
Mà $x,y$ là 2 số nguyên dương nguyên tố cùng nhau nên $(x,y)=(1,189), (189,1), (27,7), (7,27)$
$\Rightarrow (a,b)=(15,2835), (2835, 15), (405,105), (105,405)$
Tìm các cặp số nguyên tố cùng nhau trong các cặp số dưới đây : a) 8 và 12 b) 15 và 51 c) 9 và 13 d) 10 và 21.
Các cặp nguyên tố cùng nhau là c và d