Cho b2 =ac và c2=ab; a ≠0 ;b≠0;c≠0; a+b+c≠0
Tính giá trị của A = (a⁃b)2014 +(b-c)2015 + (a-c)2016
Cho a+b+c=9 và a2+b2+c2=53. tính ab+bc+ac
(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac
⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)
⇒ 2.(ab + bc + ac) = 92 - 53
2.(ab + bc + ac) = 81 - 53
2.(ab + bc + ac) = 28
ab + bc + ac = 28 : 2
ab + bc + ac = 14
Bài 3 Cho a2+b2 = c2+d2 = 1 và ac+bd = 0. Chứng minh rằng ab+cd = 0
\(ac+bd=0\)
\(=\) \(abc^2+abd^2+cda^2+cdb^2\)
\(=\) \(ac\left(bc+ad\right)+bd\left(ad+bc\right)\)
\(=\) \(\left(bc+ad\right)\left(ac+bd\right)=0\) \([\) vì ac+bd = 0 \(]\)
Cho biết [a+b+c]2 \(=\) a2 + b2 + c2.CMR :
bc/a2 + ac/a2 +ab/c2 \(=\) 3
\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)
\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)
Ta có:
\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)
Cho ab + bc + ac = 9 , a≥1 , b≥1 , c≥1
tìm min và max của bt P = a2+b2+c2
1,Cho các số thực a,b,c thỏa mãn điều kiện : a2+b2+c2=3a2+b2+c2=3 và a+b+c+ab+ac+bc=6a+b+c+ab+ac+bc=6.
Tính A=a30+b4+c1975a30+b4+c2014
Cho a2+b2 +c2 -ab-ac-bc=0
Chứng minh a=b=c
\(a^2+b^2+c^2-ab-ac-bc=0\\\Leftrightarrow 2a^2+2b^2+2c^2-2ab-2ac-2bc=0\\\Leftrightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)=0\\\Leftrightarrow (a-b)^2+(b-c)^2+(a-c)^2=0\)
Ta thấy: \(\left(a-b\right)^2\ge0\forall a;b\)
\(\left(b-c\right)^2\ge0\forall b;c\)
\(\left(a-c\right)^2\ge0\forall a;c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a;b;c\)
Mặt khác: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
nên: \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\a-c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\a=c\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\left(dpcm\right)\)
#\(Toru\)
cho a+b+c=9,a2+b2+c2=53.hỏi ac+bc+ab=?
\(a+b+c=9\)
\(\Leftrightarrow\left(a+b+c\right)^2=81\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=81\)
\(\Leftrightarrow53+2\left(ab+bc+ca\right)=81\)
\(\Leftrightarrow2\left(ab+bc+ca\right)=28\)
\(\Leftrightarrow ab+bc+ca=14\)
LÀM NHƯ MK NHÉ
(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)
thay thế vào ta được:
9^2=53=2(ab+bc+ca)
2=(ab+bc+ca)=81-53
=>ab+bc+ca=14.
mk viết bị lộn ac=ca bn sửa lại dùm nha
(a+b+c)2=a2+b2+c2+2(ab+bc+ca)
thay số trên ta được
92=53+2(ab+bc+ca)
2(ab+bc+ca)=81-53
ab+bc+ca=14
Phân tích thành nhân tử :
a). a(b2 + c2 + bc) + b(c2 + a2 + ac) + c(a2 + b2 + ab);
b). (a + b + c) (ab + bc + ca) - abc
c*). a(a + 2b)3 - b(2a + b)3.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)
cho a, b,c >0 thỏa mãn ab+bc+ca=abc
CMR : (√b2+2a2)/ab + (√c2+2b2)/bc + (√a2+2c2)/ac
cho a,b,b là các số dương và a2+b2+c2=1. Tìm GTNN của biểu thức:
P=\(\dfrac{bc}{a}\)+\(\dfrac{ac}{b}\)+\(\dfrac{ab}{c}\)
Lời giải:
$P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}$
Áp dụng BĐT AM-GM, dạng $(x+y+z)^2\geq 3(xy+yz+xz)$ ta có:
$(a^2b^2+b^2c^2+c^2a^2)^2\geq 3(a^2b^4c^2+a^4b^2c^2+a^2b^2c^4)$
$=3a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2$
$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq \sqrt{3}abc$
$\Rightarrow P=\frac{a^2b^2+b^2c^2+c^2a^2}{abc}\geq \sqrt{3}$
Vậy $P_{\min}=\sqrt{3}$. Giá trị này đạt tại $a=b=c=\frac{1}{\sqrt{3}}$