cho a+b+c=9,a2+b2+c2=53.hỏi ac+bc+ab=?
1. a3 + b3 + c3 ≥ a2 . căn (bc) + b2 .căn (ac) + c2 .căn (ab)
2. (a2 + b2 + c2)(1/(a +b ) + 1/(b+c) +1/(a+c) ) ≥ (3/2)(a + b+c)
3. a4 + b4 +c4 ≥ (a + b+c)abc
cho a,b,c là các số âm không thỏa mãn a2+b2+c2=1
Tìm GTNN và GTLN của biểu thức P=a+b+c
Cho các số thực a, b, c thay đổi luôn thỏa mãn: a ≥ 1 , b ≥ 1 , c ≥ 1 và a b + b c + c a = 9 .Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = a 2 + b 2 + c 2 .
cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
Cho a, b,c là độ dài ba cạnh tam giác. Chứng minh rằng: a/(a2 + bc) + 1/(b2+ ac) + s/(c2+ab) <= (a+b+c)/2abc
Chứng minh rằng :
1) x2+y2+z2≥xy+yz+xz
2) a2+b2+c2+3≥2(a+b+c)
3) a2+b2+c2+d2+e2≥a(b+c+d+e)
4) x2+2y2+2z2>2xy+2yz+2z−2
5) (a2+b2+c2)/3≥4/13với 4x + 9y = 2 ; Dấu "=" xảy ra khi nào?
6) abc≥(a+b−c)(a+c−b)(b+c−a)với a, b, c là 3 cạnh của một tam giác
7) CMR a+b<2cvới a, b, c là 3 số dương thỏa
a^2<bc
và b^2<ac
8) a2/3+b2+c2>ab+bc+acvới abc = 1 và a^3 > 36 |
9) Cho a, b, c là 3 cạnh của một tam giác có chu vi bằng 2
a) CMR Cả a, b và c đều bé hơn 1
b) CMR a2+b2+c2<2(1−abc)
10) bc/a+ac/b+ab/c≥a+b+cvới mọi a, b và c dương
ai trả lời sớm tớ sẽ lập nhiều nick để tick cho nha cảm ơn mọi người trước ( hiên tớ có 6 nick)
cho a, b,c >0 thỏa mãn ab+bc+ca=abc
CMR : (√b2+2a2)/ab + (√c2+2b2)/bc + (√a2+2c2)/ac