Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huỳnh Ngọc Lam

cho a,b,c ϵ R thỏa mãn a≥1; b≥1; 0≤c≤1 và a+b+c=3. Tìm GTLN và GTNN của P = (a2+b2+c2)/ab+bc+ca

Nguyễn Việt Lâm
26 tháng 1 2022 lúc 8:01

\(P=\dfrac{a^2+b^2+c^2}{ab+bc+ca}\ge\dfrac{ab+bc+ca}{ab+bc+ca}=1\)

\(P_{min}=1\) khi \(a=b=c=1\)

\(P=\dfrac{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}{ab+bc+ca}=\dfrac{9}{ab+bc+ca}-2\)

Do \(a;b\ge1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab\ge a+b-1=2-c\)

\(\Rightarrow ab+c\left(a+b\right)\ge2-c+c\left(3-c\right)=-c^2+2c+2=c\left(2-c\right)+2\ge2\)

\(\Rightarrow P\le\dfrac{9}{2}-2=\dfrac{5}{2}\)

\(P_{max}=\dfrac{5}{2}\) khi \(\left(a;b;c\right)=\left(1;2;0\right);\left(2;1;0\right)\)


Các câu hỏi tương tự
Nguyễn An
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Traan Dungx
Xem chi tiết
quachvangiang
Xem chi tiết
ILoveMath
Xem chi tiết
Trần Anh
Xem chi tiết
SKY WARS
Xem chi tiết
library
Xem chi tiết
Trần Duy Quang
Xem chi tiết