Cho a, b, c \(\ne\) 0; a + b + c = 1 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Chứng minh rằng: \(a^2+b^2+c^2=1\)
Cho tỉ lệ thức\(\frac{a}{b}=\frac{c}{d}\)với a≠0,b≠0,c≠0,d≠0,a≠b,c≠d
chứng minh \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
\(\frac{a}{b}=\frac{c}{d}\\ \Rightarrow\frac{a}{c}=\frac{b}{d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\\ \Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\left(\frac{a-b}{c-d}\right)^{2013}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
Cho \(\frac{a+b}{b+c}\) = \(\frac{c+d}{d+a}\) ( Với c+d ≠ 0 , b+c ≠ 0 , d+a ≠ 0 )
Chứng minh a = c hoặc a + b + c + d = 0
Ta có: \(\frac{a+b}{b+c}=\frac{c+d}{d+a}.\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
\(\Rightarrow\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1.\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{c+d}{c+d}=\frac{b+c}{d+a}+\frac{d+a}{d+a}.\)
\(\Rightarrow\frac{a+b+c+d}{c+d}=\frac{b+c+d+a}{d+a}\)
Nếu \(a+b+c+d\ne0.\)
\(\Rightarrow c+d=d+a\)
\(\Rightarrow c=a\left(đpcm1\right).\)
Nếu \(a+b+c+d=0\) thì hợp với đề.
\(\Rightarrow a+b+c+d=0\left(đpcm2\right).\)
Chúc bạn học tốt!
Cho đường thẳng (d): Ax + By = C(A2 + B2 ≠ 0). Tính khoảng cách từ gốc tọa độ O (0;0) đến đường thẳng (d) trong 3 trường hợp:
1) A≠0, B=0
2) A = 0, B≠0
3) AB ≠ 0
Cho \(\frac{a}{b} = \frac{c}{d}\) với b – d \( \ne \) 0; b + 2d \( \ne \) 0. Chứng tỏ rằng:
\(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
a) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{d}\)
a: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
hay \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Cho \(x^3+y^3+z^3=3xyz\) và \(a\ne b\ne c\)
C/M: \(a+b+c=0\)
Sửa đề: x+y+z=0
\(x^3+y^3+z^3=3xyz\)
=>\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
=>\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
=>\(\left(x+y+z\right)\left[x^2+2xy+y^2-xz-yz+z^2-3xy\right]=0\)
=>\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
=>\(\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)
=>\(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)(1)
x<>y<>z
=>\(x-y< >0;y-z< >0;x-z< >0\)
=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ne0\left(2\right)\)
Từ (1),(2) suy ra x+y+z=0
cho biết \(a^2+ab+\frac{b^2}{3}=25\) ; \(c^2+\frac{b^2}{3}=9;a^2+ac+c^2=16\) và a≠0, b≠0, c≠0. Chứng minh : \(\frac{2c}{a}=\frac{b+c}{a+c}\)
Có \(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)
\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)
cho a,b,c, là các hằng số và b≠0, d≠0, a≠b, 2c≠\(\pm\)3d, tìm x biết
\(x=\frac{b+3a}{b}+\frac{2a^2-2ab}{b^2-ab}\)
Cho a + b + c = 1; a + b \(\ne\)0; b + c \(\ne\)0; c + a \(\ne\)0. Tính: P = \(\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)
\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)
\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)với a \(\ne\)0, b \(\ne\)0, c \(\ne\)0, d \(\ne\)0, a khác cộng trừ b, c khác cộng trừ d.
Chứng minh: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
Đặt\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=k\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=k\Rightarrow\left(\frac{a-b}{c-d}\right)^{2013}=k^{2013}\)(1)
Mặt khác:\(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=k^{2013}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}=k^{2013}\)(2)
Từ (1);(2) ta có: \(\left(\frac{a-b}{c-d}\right)^{2013}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\left(=k^{2013}\right)\)
có \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)=>\(\frac{a^{2013}}{c^{2013}}=\frac{\left(a-b\right)^{2013}}{\left(c-d\right)^{2013}}\)
ngược lại cũng có \(\frac{a^{2013}}{c^{2013}}=\frac{b^{2013}}{d^{2013}}=\frac{a^{2013}+b^{2013}}{c^{2013}+d^{2013}}\)
=> đpcm :V