Sửa đề: x+y+z=0
\(x^3+y^3+z^3=3xyz\)
=>\(\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=0\)
=>\(\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)=0\)
=>\(\left(x+y+z\right)\left[x^2+2xy+y^2-xz-yz+z^2-3xy\right]=0\)
=>\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=0\)
=>\(\left(x+y+z\right)\left(2x^2+2y^2+2z^2-2xy-2xz-2yz\right)=0\)
=>\(\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\right]=0\)(1)
x<>y<>z
=>\(x-y< >0;y-z< >0;x-z< >0\)
=>\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ne0\left(2\right)\)
Từ (1),(2) suy ra x+y+z=0