Tìm x, y ,z biết
3x = 2y ; 4x = 2z và x + y + z = -27
tìm đa thức m biết
3x^2y^3 - x^2y - M=x^2y^3 + x^2y
\(3x^2y^3-x^2y-M=x^2y^3+x^2y\\ \Rightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y\\ \Rightarrow M=2x^2y^3-2x^2y\)
\(\Leftrightarrow M=3x^2y^3-x^2y-x^2y^3-x^2y=2x^2y^3-2x^2y\)
Tìm x,y biết
3x=4y và x+y=58
tìm x,y biết
3x+1.5y-2=152x-y
e đang cần gấp, cảm ơn mn
Tìm x,biết
3x-4-63=18
Tìm x biết
3x .32 .3 = 243.3
\(3^x.3^2.3=243.3\\ \Rightarrow3^x.3^2=243\\ \Rightarrow3^x.3^2=3^5\\ \Rightarrow3^x=3^5:3^2\\ \Rightarrow3^x=3^3\\ \Rightarrow x=3\)
tìm x,biết
3x(x+4)-3x^2-4=0
Among us:)
\(3x\left(x+4\right)-3x^2-4=0\\ \Rightarrow3x^2+12x-3x^2-4=0\\ \Rightarrow12x-4=0\\ \Rightarrow12x=4\\ \Rightarrow x=\dfrac{1}{3}\)
Tìm x,y,z thỏa x(x+2y+3z)=-5; y(x+2y+3z)=27 ; z(x+2y+3z)=5
Ta có: \(\left\{{}\begin{matrix}x\left(x+2y+3z\right)=-5\\y\left(x+2y+3z\right)=27\\z\left(x+2y+3z\right)=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{-5}=x+2y+3z\\\dfrac{y}{27}=x+2y+3z\\\dfrac{z}{5}=x+2y+3z\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{-5}=\dfrac{y}{27}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-27}{5}x\\z=-x\end{matrix}\right.\)
Ta có: \(x\left(x+2y+3z\right)=-5\Rightarrow x\left(x+2.\dfrac{-27}{5}x-3x\right)=-5\)
\(\Rightarrow\dfrac{-64}{5}x^2=-5\Rightarrow x^2=\dfrac{25}{64}\Rightarrow x=\dfrac{5}{8}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{8}\\y=-\dfrac{27}{5}x=-\dfrac{27}{8}\\z=-x=-\dfrac{5}{8}\end{matrix}\right.\)
Tìm x, y,z : x/2y+2z+1=y/2x+2z+1=z/2x+2y-2=2. (x+y+z)
\(\frac{2}{x+y+z}=\frac{x}{2y+2z+1}=\frac{y}{2x+2z+1}=\frac{z}{2x+2y-2}=\frac{x+y+z}{4\left(x+y+z\right)}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}2y+2z+1=4x\\2x+2z+1=4y\\x+y+z=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=\frac{17}{6}\\z=\frac{7}{3}\end{cases}}\)
cho : B= x-y+z / x+2y -z va x/2 = y/5= z/7 va x+2y - z khac 0
tìm x,y , z
cho : B= x-y+z / x+2y -z va x/2 = y/5= z/7 va x+2y - z khac 0
tìm x,y , z