Tìm x,y,z biết:
a;\(\frac{2x+3}{5x+2}=\frac{4x+5}{10+2}\)
b; \(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\) và \(x\times y\times z=640\)
mn làm hộ mik nha!
help me!
ai làm đc thì mik sẽ tick cho
Bài 1: Tìm x biết:
a./ b./ c*./
Bài 2: Tìm x, y, z biết : a/ b/ c/ =
d/ e/ = và x + y = 22 f/ và
Bài 3: Tìm x, y biết:
a) x : 3 = 4 : 5 b) (x+2).(x-3) = 0 c) x2 – 3x = 0 d) e) 9x =81
f) h) và x + y= -21 i) và 3x - 2y = -2
k*) 2x = 3y = 5z và x + 2y – z = 29 l*) và 3x – 2y – z = -29
Tìm x;y;z biết:
a) \(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}\) và x - y + z = -28
a: =>\(\dfrac{x}{-5}=\dfrac{y}{-7}=\dfrac{z}{2}=\dfrac{x-y+z}{-5+7+2}=\dfrac{-28}{4}=-7\)
=>x=35; y=49; z=-14
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/-5=y/-7=z/2=(x-y+z)/((-5)-(-7)+2)=-28/4=-7`
`-> x/-5=y/-7=z/2=-7`
`-> x=-7*-5=35, y=-7*-7=49, z=-7*2=-14`
Cho dãy tỉ số bằng nhau \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\). Tìm ba số x,y,z biết:
a) x+y+z = 180; b) x + y – z = 8
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{180}{12}=15\)
=>x=45; y=60; z=75
b:
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{8}{2}=4\)
=>x=12; y=16; z=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y + z}}{{3 + 4 + 5}} = \frac{{180}}{{12}} = 15\)
Vậy x = 3 . 15 = 45; y = 4 . 15 = 60; z = 5 . 15 = 75
b) \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5} = \frac{{x + y - z}}{{3 + 4 - 5}} = \frac{8}{2} = 4\)
Vậy x = 3. 4 = 12; y = 4.4 = 16; z = 5.4 = 20
Tìm x, y ∈ Z biết:
a, (x - 3)(y + 5) = 11
b, (2x + 1)(6 - y) = 12
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |
Tìm x,y,z biết:a) \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{10}\)và y-x=6
Tìm x,y,z biết:b) \(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{7}\)và x-2y+z=18
a) Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)
⇒\(\dfrac{y-x}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{5}=2\Rightarrow y=10\)
\(\dfrac{z}{10}=2\Rightarrow z=20\)
b) Ta có: \(\dfrac{x}{8}=\dfrac{2y}{6}=\dfrac{z}{7}\)
\(\dfrac{x-2y+z}{8-6+7}=\dfrac{18}{9}=2\)
\(\dfrac{x}{8}=2\Rightarrow x=16\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{7}=2\Rightarrow z=14\)
Tìm các số x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và x - 2y + 3z = 33
b) x : y : z = 10 : 6 : 21 và y + 5x - 2z = -42
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
Tìm x,y ∈ Z, biết:
a) (x+1)(y+4)=7
b) xy+2x - 3y = -1
< giúp mí >
a) \(\left(x+1\right)\left(y+4\right)=7\).
-Vì \(x,y\in Z\) nên ta có thể viết:
\(\left(x+1\right)\left(y+4\right)=1.7\) hay \(\left(x+1\right)\left(y+4\right)=7.1\) hay \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\) hay \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\)
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=1.7\):
\(\Rightarrow x+1=1\) và \(y+4=7\)
\(\Rightarrow x=0\left(tmđk\right)\) và \(y=3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=7.1\):
\(\Rightarrow x+1=7\) và \(y+4=1\)
\(\Rightarrow x=6\left(tmđk\right)\) và \(y=-3\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-1\right).\left(-7\right)\):
\(\Rightarrow x+1=-1\) và \(y+4=-7\)
\(\Rightarrow x=-2\left(tmđk\right)\) và \(y=-11\left(tmđk\right)\).
+Xét trường hợp \(\left(x+1\right)\left(y+4\right)=\left(-7\right).\left(-1\right)\):
\(\Rightarrow x+1=-7\) và \(y+4=-1\)
\(\Rightarrow x=-8\left(tmđk\right)\) và \(y=-5\left(tmđk\right)\).
b) \(xy+2x-3y=-1\)
\(\Rightarrow xy+2x-3y+1=0\)
\(\Rightarrow y\left(x-3\right)=-2x-1\)
\(\Rightarrow y=-\dfrac{2x+1}{x-3}=\dfrac{2\left(x-3\right)-5}{x-3}=2-\dfrac{5}{x-3}\)
-Vì \(y\in Z\) \(\Rightarrow5⋮\left(x-3\right)\).
\(\Rightarrow\left(x-3\right)\inƯ\left(5\right)\)
\(\Rightarrow x-3\in\left\{1;-1;5;-5\right\}\)
\(\Rightarrow x\in\left\{4;2;8;-2\right\}\) (đều thỏa mãn điều kiện).
+Với \(x=4\) thì \(y=\dfrac{5}{4-3}=5\) (tmđk).
+Với \(x=2\) thì \(y=\dfrac{5}{2-3}=-5\) (tmđk).
+Với \(x=8\) thì \(y=\dfrac{5}{8-3}=1\) (tmđk)
+Với \(x=-2\) thì \(y=\dfrac{5}{-2-3}=-1\) (tmđk).
Tìm x,y,z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{4}\) và x-y+z=-21
b)\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và \(x^2-2y^2+z^2=44\)
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)⇒\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\)
⇒x=8;y=12;z=20
Tìm x,y,z biết:
a)\(\dfrac{x-1}{2}\)=\(\dfrac{y-2}{3}\)=\(\dfrac{z-3}{4}\) và 2x+3y-z=50
b)\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{5}\)và xyz=810
a, Ta có :
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\Rightarrow\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
\(\Rightarrow x=11;y=17;z=23\)
b, Đặt \(\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\Rightarrow xyz=810\)
\(\Rightarrow2k.3k.5k=810\Leftrightarrow30k^3=810\Leftrightarrow k^3=27\Leftrightarrow k=3\)
\(\Rightarrow x=6;y=9;z=15\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{2x-2}{4};\dfrac{y-2}{3}=\dfrac{3y-6}{9};\dfrac{z-3}{4}\)
Áp dụng t/c dtsbn:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{4+9-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=5\\\dfrac{y-2}{3}=5\\\dfrac{z-3}{4}=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=12\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
xyz = 810
=> 2k.3k.5k = 810
=> k = 3
\(\Rightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=15\end{matrix}\right.\)
a) Ta có: \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
nên \(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}\)
mà 2x+3y-z=50
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x-2}{4}=\dfrac{3y-6}{9}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{4+9-4}=\dfrac{50-5}{9}=5\)
Do đó:
\(\left\{{}\begin{matrix}x-1=10\\y-2=15\\z-3=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)
b) Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: xyz=810
\(\Leftrightarrow30k^3=810\)
\(\Leftrightarrow k^3=27\)
\(\Leftrightarrow k=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k=2\cdot3=6\\y=3k=3\cdot3=6\\z=5k=5\cdot3=15\end{matrix}\right.\)
Tìm các số x,y,z biết:
a) x:y = 2:5 và 2x - y = 3
b) x/2 = y/3; y/4 = z/7 và 2x - y + z =50
c) x/2 = y/3 = z/4 và x2 - y2 + 2z2 = 108
Lời giải:
a. Áp dụng TCDTSBN:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow \frac{x}{2}=\frac{y}{5}=\frac{2x}{4}=\frac{y}{5}=\frac{2x-y}{4-5}=\frac{3}{-1}=-3\)
$\Rightarrow x=-3.2=-6; y=-3.5=-15$
b. Áp dụng TCDTSBN:
$\frac{x}{2}=\frac{y}{3}; \frac{y}{4}=\frac{z}{7}$
$\Rightarrow \frac{x}{8}=\frac{y}{12}=\frac{z}{21}$
$=\frac{2x}{16}=\frac{y}{12}=\frac{z}{21}=\frac{2x-y+z}{16-12+21}=\frac{50}{25}=2$
$\Rightarrow x=8.2=16; y=2.12=24; z=2.21=42$
c.
$\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$
$\Rightarrow \frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{2z^2}{32}$
$=\frac{x^2-y^2+2z^2}{4-9+32}=\frac{108}{27}=4$
$\Rightarrow x^2=4.4=16; y^2=9.4=36; z^2=4.4=16$
Kết hợp với đkxđ suy ra:
$(x,y,z)=(4,6,4); (-4; -6; -4)$