Violympic toán 9

Agami Raito

Cho x,y,z >0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{x\left(x^2+y^2\right)}\)

tthnew
16 tháng 10 2019 lúc 10:25

Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)=\left(a;b;c\right)\). Bài toán tuyệt vời của chúng ta trở thành:

Cho \(a,b,c>0;a^2+b^2+c^2=1\). Tìm Min:

\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\) . Đây quả là một bài toán quá quen thuộc:D

Thử thay \(a=b=c=\frac{1}{\sqrt{3}}\Rightarrow P=\frac{3\sqrt{3}}{2}=\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)\). Ta sẽ chứng minh đó là Min P. Thật vậy ta cần chứng minh:

\(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}}{2}\)

\(\Leftrightarrow\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)\)

Đầu tiên ta chứng minh BĐT: \(\frac{a}{1-a^2}\ge\frac{3\sqrt{3}}{2}a^2\left(1\right)\Leftrightarrow\frac{1}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}\)

\(\Leftrightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Leftrightarrow a^2\left(1-a^2\right)^2\le\frac{4}{27}\). Theo BĐT AM-GM, ta có

\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

Vậy BĐT (1) đúng. Thiết lập tương tự 2 BĐT còn lại và cộng theo vế ta thu được min P.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\Leftrightarrow x=y=z=\sqrt{3}\)

Vậy ....

P/s: Em làm đúng không ạ?@Nguyễn Việt Lâm

Bình luận (0)

Các câu hỏi tương tự
Angela jolie
Xem chi tiết
Nguyễn Thị Thu Hằng
Xem chi tiết
dbrby
Xem chi tiết
Mẫn Đan
Xem chi tiết
fghj
Xem chi tiết
bach nhac lam
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
tran thi mai anh
Xem chi tiết