HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
1. cho \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) \(\ne\) 0 rut goc bieu thuc M =\(\frac{x^2-y^2+z^2}{\left(\text{ax}-by+cz\right)}\)
a) CMR: (ax+by+cz)\(^2\)\(\le\)\(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)
b) Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2\)=1
CMR: \(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\le\frac{9}{2\left(a+b+c\right)}\)
Cho x,y,z là các số thực thỏa mãn (x-y)(x-z)=1; y ≠ z.
Chứng minh rằng: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}\ge4\)
Chứng minh rằng: Nếu \(ax^3=by^3=cz^3\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) thì \(\sqrt[3]{ax^2+by^2+cz^2}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)