Nghiệm của bất phương trình \(1 - 2x \ge 2 - x\) là
A. \(x > \frac{1}{2}.\)
B. \(x < \frac{1}{2}.\)
C. \(x \le - 1.\)
D. \(x \ge - 1.\)
Nghiệm của bất phương trình \(1 - 2x \ge 2 - x\) là
A. \(x > \frac{1}{2}.\)
B. \(x < \frac{1}{2}.\)
C. \(x \le - 1.\)
D. \(x \ge - 1.\)
Phương trình \(x - 1 = m + 4\) có nghiệm lớn hơn 1 với
A. \(m \ge - 4.\)
B. \(m \le 4.\)
C. \(m > - 4.\)
D. \(m < - 4.\)
Thảo luận (1)Hướng dẫn giảiTa có \(x - 1 = m + 4\) nên \(x = m + 5\)
Nghiệm lớn hơn 1 nên ta có \(m + 5 > 1\) nên \(m > - 4.\)
Đáp án đúng là đáp án C.
(Trả lời bởi Hà Quang Minh)
Cho \(a < b,\) hãy so sánh:
a) \(a + b + 5\) với \(2b + 5;\)
b) \( - 2a - 3\) với \( - \left( {a + b} \right) - 3.\)
Thảo luận (1)Hướng dẫn giảia) \(a + b + 5\) với \(2b + 5;\)
Ta có: \(a < b\) nên ta có \(a + b < b + b\) suy ra \(a + b + 5 < 2b + 5\)
b) \( - 2a - 3\) với \( - \left( {a + b} \right) - 3.\)
Ta có: \(a < b\) nên ta có \(a + a < b + a\) suy ra \( - 2a > - \left( {a + b} \right)\)
Do đó ta có \( - 2a - 3 > - \left( {a + b} \right) - 3.\)
(Trả lời bởi Hà Quang Minh)
Cho \(a > b\) Khi đó ta có:
A. \(2a > 3b.\)
B. \(2a > 2b + 1.\)
C. \(5a + 1 > 5b + 1.\)
D. \( - 3a < - 3b - 3.\)
Thảo luận (1)Hướng dẫn giảiTa có \(a > b\) nên \(5a > 5b\) suy ra \(5a + 1 > 5b + 1\)
Vậy đáp án đúng là đáp án C.
(Trả lời bởi Hà Quang Minh)
Giải các phương trình sau:
a) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
b) \(\frac{1}{{x - 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
Thảo luận (1)Hướng dẫn giảia) \(\frac{x}{{x - 5}} - \frac{2}{{x + 5}} = \frac{{{x^2}}}{{{x^2} - 25}};\)
ĐKXĐ: \(x \ne \pm 5\)
Quy đồng mẫu thức ta được \(\frac{{x\left( {x + 5} \right)}}{{\left( {x - 5} \right)\left( {x + 5} \right)}} - \frac{{2\left( {x - 5} \right)}}{{\left( {x + 5} \right)\left( {x - 5} \right)}} = \frac{{{x^2}}}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\)
Khử mẫu ta được \(x\left( {x + 5} \right) - 2\left( {x - 5} \right) = {x^2}\) hay \({x^2} + 5x - 2x + 10 - {x^2} = 0\)
Suy ra \(3x + 10 = 0\) nên \(x = \frac{{ - 10}}{3}\) (TM)
Vậy nghiệm của phương trình là \(x = \frac{{ - 10}}{3}.\)
b) \(\frac{1}{{x + 1}} - \frac{x}{{{x^2} - x + 1}} = \frac{3}{{{x^3} + 1}}.\)
ĐKXĐ: \(x \ne - 1.\)
Quy đồng mẫu thức ta được \(\frac{{1.\left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{x\left( {x + 1} \right)}}{{\left( {{x^2} - x + 1} \right)\left( {x + 1} \right)}} = \frac{3}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\)
Khử mẫu ta được \({x^2} - x + 1 - x\left( {x + 1} \right) = 3\) hay \({x^2} - x + 1 - {x^2} - x - 3 = 0\) suy ra \( - 2x - 2 = 0\) nên \(x = - 1\left( {ktm} \right)\)
Vậy phương trình vô nghiệm.
(Trả lời bởi Hà Quang Minh)
Giải các bất phương trình:
a) \(2x + 3\left( {x + 1} \right) > 5x - \left( {2x - 4} \right);\)
b) \(\left( {x + 1} \right)\left( {2x - 1} \right) < 2{x^2} - 4x + 1.\)
Thảo luận (1)Hướng dẫn giảia) \(2x + 3\left( {x + 1} \right) > 5x - \left( {2x - 4} \right);\)
Ta có: \(2x + 3x + 3 > 5x - 2x + 4\)
\(5x + 3 > 3x + 4\)
\(5x - 3x > 4 - 3\)
\(2x > 1\)
\(x > \frac{1}{2}\)
Vậy nghiệm của bất phương trình là \(x > \frac{1}{2}\)
b) \(\left( {x + 1} \right)\left( {2x - 1} \right) < 2{x^2} - 4x + 1.\)
Ta có \(\left( {x + 1} \right)\left( {2x - 1} \right) < 2{x^2} - 4x + 1\)
\(2{x^2} + 2x - x - 1 < 2{x^2} - 4x + 1\)
\(x - 1 < - 4x + 1\)
\(x + 4x < 1 + 1\)
\(5x < 2\)
\(x < \frac{5}{2}.\)
Vậy nghiệm của bất phương trình là \(x < \frac{5}{2}.\)
(Trả lời bởi Hà Quang Minh)
Thanh tham dự một kì kiểm tra năng lực tiếng Anh gồm 4 bài kiểm tra nghe, nói, đọc và viết. Mỗi bài kiểm tra có điểm số nguyên từ 0 đến 10. Điểm trung bình của ba bài kiểm tra nghe, nói, đọc của Thanh là 6,7. Hỏi bài kiểm tra viết của Thanh cần được bao nhiêu điểm để điểm trung bình của cả 4 bài kiểm tra được từ 7,0 trở lên? Biết điểm trung bình được tính gần đúng đến chữ số thập phân thứ nhất.
Thảo luận (1)Hướng dẫn giảiĐiểm trung bình của 3 bài nên tổng điểm 3 bài là \(6,7.3 = 20,1\)
Điểm trung bình của 4 bài ít nhất là 7,0 nên tổng điểm 4 bài ít nhất là \(4.7,0 = 28\)
Gọi điểm bài kiểm tra viết của Thanh là x \(\left( {0 \le x \le 10,x \in \mathbb{N}} \right)\)
Vì tổng điểm 3 bài là 20,1 và bài kiểm tra viết là x điểm nên tổng số điểm là \(20,1 + x\)
Để điểm trung bình của cả 4 bài được từ 7,0 trở lên thì tổng điểm của 4 bài ít nhất là 28 điểm nên ta có bất phương trình \(20,1 + x \ge 28\) từ đó ta có \(x \ge 7,9\)
Mà \(0 \le x \le 10,x \in \mathbb{N}\) nên x nhỏ nhất là 8.
Vậy bạn Thanh cần tối thiểu 8 điểm để trung bình cả 4 bài kiểm tra từ 7,0 trở lên.
(Trả lời bởi Hà Quang Minh)
Để lập đội tuyển năng khiếu về bóng rổ của trường, thầy thể dục đưa ra quy định tuyển chọn như sau: mỗi bạn dự tuyển sẽ ném được 15 quả bóng vào rổ, quả bóng vào rổ được 2 điểm; quả bóng ném ra ngoài bị trừ 1 điểm. Nếu bạn nào có số điểm từ 15 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì ném ít nhất bao nhiêu quả vào rổ?
Thảo luận (1)Hướng dẫn giảiGọi số quả bóng ném trúng rổ là x \(\left( {0 < x \le 15} \right)\)
Số điểm thu được khi ném trúng x quả là \(2.x\)
Tổng số bóng được ném là 15 quả, x quả trúng nên số quả trượt là \(15 - x\)
Số điểm bị mất khi ném trượt \(15 - x\) là \(\left( {15 - x} \right).1 = 15 - x\)
Nên số điểm người đó thu được khi ném trúng được x quả là \(2x - \left( {15 - x} \right) = 3x - 15\)
Số điểm để học sinh được chọn vào đội tuyển thì cần ít nhất 15 điểm nên ta có bất phương trình \(3x - 15 \ge 15\) hay \(3x \ge 30\) suy ra \(x \ge 10\)
Vậy học sinh muốn được chọn vào đội tuyển thì cần ném ít nhất 10 quả vào rổ.
(Trả lời bởi Hà Quang Minh)
Một hãng viễn thông nước ngoài có hai gói cước như sau:

a) Hãy viết một phương trình xác định thời gian gọi (phút) mà phí phải trả trong cùng một tháng của hai gói cước là như nhau và giải phương trình đó.
b) Nếu khách hàng chỉ gọi tối đa là 180 phút trong 1 tháng thì nên dùng gói cước nào? Nếu khách hàng gọi 500 phút trong 1 tháng thì nên dùng gói cước nào?
Thảo luận (1)Hướng dẫn giảia) Gọi thời gian gọi trong một tháng là x (phút) \(\left( {x > 0} \right)\)
Số tiền phải trả khi gọi x phút đối với gói cước B là \(44 + 0,25.x\) (USD)
Số tiền phải trả khi x phút đối với gói cước A là
\(TH1:x \le 45\) thì phí trả là 32 USD.
\(TH2:x > 45\) thì phí trả là \(32 + 0,4.\left( {x - 45} \right)\)
Vì số tiền phải trả của gói cước B lớn hơn 44 nên để phí trả hai gói cước trong cùng một tháng của hai gói cước là như nhau thì đối với gói cước A thì sẽ rơi vào trường hợp thứ hai nên ta có phương trình:
\(44 + 0,25.x = 32 + \left( {x - 45} \right).0,4\)
\(0,25.x - 0,4x = - 44 + 32 - 45.0,4\)
\( - 0,15x = - 30\)
\(x = 200\left( {t/m} \right).\)
Vậy khi gọi 180 phút thì chi phí phải trả đối với hai gói cước là như nhau.
b) Đối với \(x = 180\) số tiền phải trả khi dùng gói cước A là:
\(32 + \left( {180 - 45} \right).0,4 = 86\) (USD)
Đối với \(x = 180\) số tiền phải trả khi dùng gói cước B là:
\(44 + 0,25.180 = 89\) (USD)
Vậy khi gọi tối đa 180 phút trong 1 tháng thì nên dùng gói cước A.
Đối với \(x = 500\) số tiền phải trả khi dùng gói cước A là:
\(32 + \left( {500 - 45} \right).0,4 = 214\) (USD)
Đối với \(x = 500\) số tiền phải trả khi dùng gói cước B là:
\(44 + 0,25.500 = 169\) (USD)
Vậy khi gọi 500 phút trong 1 tháng thì nên dùng gói cước B.
(Trả lời bởi Hà Quang Minh)
Giải các phương trình sau:
a) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0;\)
b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right).\)
Thảo luận (1)Hướng dẫn giảia) \({\left( {3x - 1} \right)^2} - {\left( {x + 2} \right)^2} = 0;\)
\(\begin{array}{l}\left( {3x - 1 - x - 2} \right)\left( {3x - 1 + x + 2} \right) = 0\\\left( {2x - 3} \right)\left( {4x + 1} \right) = 0\\TH1:2x - 3 = 0\\x = \frac{3}{2}.\end{array}\)
\(\begin{array}{l}TH2:4x + 1 = 0\\x = \frac{{ - 1}}{4}.\end{array}\)
Vậy nghiệm của phương trình là \(x \in \left\{ {\frac{3}{2};\frac{{ - 1}}{4}} \right\}.\)
b) \(x\left( {x + 1} \right) = 2\left( {{x^2} - 1} \right).\)
\(\begin{array}{l}x\left( {x + 1} \right) - 2\left( {{x^2} - 1} \right) = 0\\x\left( {x + 1} \right) - 2\left( {x - 1} \right)\left( {x + 1} \right) = 0\\x\left( {x + 1} \right) - \left( {2x - 2} \right)\left( {x + 1} \right) = 0\\\left( {x + 1} \right)\left( {x - 2x + 2} \right) = 0\\\left( {x + 1} \right)\left( {2 - x} \right) = 0\\TH1:x + 1 = 0\\x = - 1\\TH2:2 - x = 0\\x = 2\end{array}\)
Vậy nghiệm của phương trình là \(x \in \left\{ { - 1;2} \right\}.\)
(Trả lời bởi Hà Quang Minh)