Bài 7: Ôn tập chương Hàm số lũy thừa, hàm số mũ và hàm số lôgarit

Bài 2.55 (Sách bài tập trang 134)

Bài 2.56 (Sách bài tập trang 134)

Bài 2.57 (Sách bài tập trang 134)

Bài 2.58 (Sách bài tập trang 134)

Hướng dẫn giải

a) \(\left(\dfrac{1}{2}\right)^n\le10^{-9}\)\(\Leftrightarrow2^{-n}\le10^{-9}\)\(\Leftrightarrow-n\le log^{10^{-9}}_2\)\(\Leftrightarrow-n\le-9log^{10}_2\)\(\Leftrightarrow n\ge9log^{10}_2\)\(\Leftrightarrow n\ge30\).
Vậy \(n=30\).

 

b) \(3-\left(\dfrac{7}{5}\right)^n\le0\)

\(\Leftrightarrow-\left(\dfrac{7}{5}\right)^n\le-3\)

\(\Leftrightarrow\left(\dfrac{7}{5}\right)^n\ge3\)\(\Leftrightarrow n\ge log^3_{\dfrac{7}{5}}\)

\(\Rightarrow\)\(n\in\left\{4;5;6;7;...\right\}\Rightarrow n=4\)

c) \(1-\left(\dfrac{4}{5}\right)^n\ge0,97\)

\(\Leftrightarrow-\left(\dfrac{4}{5}\right)^n\ge-0,3\)

\(\Leftrightarrow\left(\dfrac{4}{5}\right)^n\le0,3\)\(\Leftrightarrow n\ge log^{0,3}_{\dfrac{4}{5}}\)

\(\Rightarrow n\in\left\{6;7;8;9...\right\}\Rightarrow n=6\)

d)\(\left(1+\dfrac{5}{100}\right)^n\ge2\)

\(\Leftrightarrow1,05^n\ge2\)

\(\Rightarrow n\in\left\{15;16;17;18;...\right\}\Rightarrow n=15\)

(Trả lời bởi Mới vô)
Thảo luận (2)