Bài 6. Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Vận dụng 2 (SGK Kết nối tri thức với cuộc sống - Trang 32)

Hướng dẫn giải

\({1002^2} = {\left( {1000 + 2} \right)^2} = {1000^2} + 2.1000.2 + {2^2} = 1000000 + 4000 + 4 = 1004004\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.1 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

a)      \(x + 2 = 3x + 1\) không là hằng đẳng thức vì khi ta thay \(x = 0\) thì hai vế của đẳng thức không bằng nhau.

b)      \(2x\left( {x + 1} \right) = 2{x^2} + 2x\) là hằng đẳng thức vì với mọi giá trị của x thì hai vế bằng nhau.

c)      \(\left( {a + b} \right)a = {a^2} + ba\) là hằng đẳng thức vì với mọi giá trị của a, b thì hai vế bằng nhau.

d)      \(a - 2 = 2a + 1\) không là hằng đẳng thức vì khi ta thay \(a = 0\) thì hai vế của đẳng thức không bằng nhau.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.2 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

a)      \(\left( {x - 3y} \right)\left( {x + 3y} \right) = {x^2} - 9{y^2}\);

b)      \(\left( {2x - y} \right)\left( {2x + y} \right) = 4{x^2} - {y^2}\);

c)      \({x^2} + 8xy + 16{y^2} = {\left( {x + 4y} \right)^2}\);

d)      \(4{x^2} - 12xy + 9{y^2} = {\left( {2x - 3y} \right)^2}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.3 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

a)      \(54.66 = \left( {60 - 6} \right).\left( {60 + 6} \right) = {60^2} - {6^2} = 3600 - 36 = 3564\)

b)      \({203^2} = {\left( {200 + 3} \right)^2} = {200^2} + 2.200.3 + {3^2} = 40000 + 1200 + 9 = 41209\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.4 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

a)      \({x^2} + 4x + 4 = {x^2} + 2.x.2 + {2^2} = {\left( {x + 2} \right)^2}\)

b)      \(16{a^2} - 16ab + 4{b^2} = {\left( {4a} \right)^2} - 2.4a.2b + {\left( {2b} \right)^2} = {\left( {4a - 2b} \right)^2}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.5 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

a)      \({\left( {x - 3y} \right)^2} - {\left( {x + 3y} \right)^2} = \left( {x - 3y + x + 3y} \right).\left( {x - 3y - x - 3y} \right) = \left( {2x} \right).\left( { - 6y} \right) =  - 12xy\)

b)       

\(\begin{array}{l}{\left( {3x + 4y} \right)^2} + {\left( {4x - 3y} \right)^2} = {\left( {3x} \right)^2} + 2.3x.4y + {\left( {4y} \right)^2} + {\left( {4x} \right)^2} - 2.4x.3y + {\left( {3y} \right)^2}\\ = 9{x^2} + 24xy + 16{y^2} + 16{x^2} - 24xy + 9{y^2}\\ = \left( {9{x^2} + 16{x^2}} \right) + \left( {24xy - 24xy} \right) + \left( {16{y^2} + 9{y^2}} \right)\\ = 25{x^2} + 25{y^2}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 2.6 (SGK Kết nối tri thức với cuộc sống - Trang 33)

Hướng dẫn giải

Ta có:

\({\left( {n + 2} \right)^2} - {n^2} = \left( {n + 2 - n} \right).\left( {n + 2 + n} \right) = 2.\left( {2n + 2} \right) = 2.2.\left( {n + 1} \right) = 4.\left( {n + 1} \right)\).

Vì \(4 \vdots 4\) nên \(4\left( {n + 1} \right) \vdots 4\) với mọi số tự nhiên n. 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)