Bài 4: Ứng dụng hình học của tích phân

Bài tập 1 (SGK Cánh Diều - Tập 2 - Trang 38)

Hướng dẫn giải

Diện tích hình thang cong đó là: \(\int\limits_1^2 {\left| {\frac{4}{x} - \left( { - x - 3} \right)} \right|dx} = \int\limits_1^2 {\left| {\frac{4}{x} + x + 3} \right|dx} = \int\limits_1^2 {\left( {\frac{4}{x} + x + 3} \right)dx} \)

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 2 - Trang 38)

Hướng dẫn giải

Thể tích khối tròn xoay đó là: \(V = \pi \int\limits_0^2 {{{\left( {\sqrt x } \right)}^2}dx} = \pi \int\limits_0^2 {xdx} \)

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 3 (SGK Cánh Diều - Tập 2 - Trang 40)

Hướng dẫn giải

a) Hình phẳng đó được giới hạn bởi đồ thị hàm số \(y = {e^x}\), trục Ox, đường thẳng x = -1 và x = 1

b) Diện tích hình phẳng đó là: \(S = \int\limits_{ - 1}^1 {{e^x}} dx = \left. {{e^x}} \right|_{ - 1}^1 = e - \frac{1}{e}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 2 - Trang 40)

Hướng dẫn giải

a) Hình phẳng đó được giới hạn bởi đồ thị hàm số y = x + 1, \(y = {\left( {\frac{1}{2}} \right)^x}\), đường thẳng x = 0 và x = 2

b) Diện tích hình phẳng đó là: \(S = \int\limits_0^2 {\left| {x + 1 - {{\left( {\frac{1}{2}} \right)}^x}} \right|} dx = \int\limits_0^2 {\left( {x + 1 - {{\left( {\frac{1}{2}} \right)}^x}} \right)} dx = \left. {\left( {\frac{{{x^2}}}{2} + x - \frac{{{{\left( {\frac{1}{2}} \right)}^x}}}{{ - \ln 2}}} \right)} \right|_0^2 \approx 2,92\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 5 (SGK Cánh Diều - Tập 2 - Trang 40)

Hướng dẫn giải

a) Hình phẳng đó được giới hạn bởi đồ thị hàm số \(y = \frac{1}{x}\), trục Ox, đường thẳng x = 1 và x = 2.

b) Thể tích khối tròn xoay đó là:

\(V = \pi \int\limits_1^2 {{{\left( {\frac{1}{x}} \right)}^2}dx} = \pi \int\limits_1^2 {{x^{ - 2}}dx} = \pi \frac{{{x^{ - 2 + 1}}}}{{ - 2 + 1}}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = - \pi {x^{ - 1}}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = \frac{{ - \pi }}{x}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = \frac{{ - \pi }}{2} - \frac{{ - \pi }}{1} = \frac{\pi }{2}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 2 - Trang 40)

Hướng dẫn giải

a) Diện tích hình phẳng đó là: \(S = \frac{{1 + 2}}{2}.2 = 3\)

b) \(\int\limits_0^1 {f(u)du} \) biểu thị cho phần diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = f(t), trục Ot, hai đường thẳng x = 0 và x = 1

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 7 (SGK Cánh Diều - Tập 2 - Trang 41)

Hướng dẫn giải

Chọn hệ tọa độ Oxy với gốc tọa độ O trùng với chân cửa bên trái

Đồ thị hàm số biểu thị cho cửa trên hệ tọa độ có dạng: \(y = a{x^2} + bx + c\)

Đồ thị hàm số này đi qua điểm (0;0) và có đỉnh là (35;21) nên:

\( \Rightarrow \left\{ \begin{array}{l}0 = c\\ - \frac{b}{{2a}} = 35\\ - \frac{{{b^2} - 4ac}}{{4a}} = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 = c\\ - \frac{b}{{2a}} = 35\\ - \frac{{{b^2}}}{{4a}} = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 = c\\b = \frac{6}{5}\\a = - \frac{3}{{175}}\end{array} \right. \Rightarrow y = - \frac{3}{{175}}{x^2} + \frac{6}{5}x\)

Diện tích kính cần lắp là: \(\int\limits_0^{70} {\left( { - \frac{3}{{175}}{x^2} + \frac{6}{5}x} \right)} dx = \left. {\left( {\frac{{ - {x^3}}}{{175}} + \frac{{3{x^2}}}{5}} \right)} \right|_0^{70} = 980{m^2}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 8 (SGK Cánh Diều - Tập 2 - Trang 41)

Hướng dẫn giải

Hình phẳng màu xanh được giới hạn bởi đồ thị hàm số y = f(x), đường thẳng y = 5, x = -5 và x =10

Diện tích hình phẳng màu xanh là: \(S = \int\limits_{ - 5}^{10} {\left| {5 - \frac{3}{{100}}\left( { - \frac{1}{3}{x^3} + 5{x^2}} \right)} \right|dx} = \left| {\left( {5x + \frac{{{x^4}}}{{400}} - \frac{{{x^3}}}{{20}}} \right)} \right|_{ - 5}^{10} = \frac{{675}}{{16}}{m^2}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 9 (SGK Cánh Diều - Tập 2 - Trang 41)

Hướng dẫn giải

Xét tam giác vuông OPM:

\(MP = OM.\sin \widehat {POM} = l.\sin \alpha \)

\(OP = OM.\cos \widehat {POM} = l.\cos \alpha \)

Khối tròn xoay là một hình nón có diện tích là: \(V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi {\left( {l.\sin \alpha } \right)^2}.l.\cos \alpha = \frac{1}{3}\pi {l^3}.{\sin ^2}\alpha \cos \alpha \)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 10 (SGK Cánh Diều - Tập 2 - Trang 41)

Hướng dẫn giải

Thể tích thùng rượu vang đó là:

\(V = \pi \int\limits_{ - 35}^{35} {{{( - 0,011{x^2} - 0,071x + 40)}^2}dx} \)

\( = \pi \int\limits_{ - 35}^{35} {(0,000121{x^2} + 0,005041{x^2} + 1600 + 0,001562{x^3} - 0,88{x^2} - 5,68x)dx} \)\( = \pi \int\limits_{ - 35}^{35} {(0,000121{x^2} + 0,001562{x^3} - 0,874959{x^2} - 5,68x + 1600)dx} \)

\( = \pi (0,0000242{x^5} + 0,0003905{x^4} - 0,291653{x^3} - 2,84{x^2} + 1600x)|_{ - 35}^{35}\)

\( \approx 281275,6307\) \((c{m^2})\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)