a) Hình phẳng đó được giới hạn bởi đồ thị hàm số \(y = \frac{1}{x}\), trục Ox, đường thẳng x = 1 và x = 2.
b) Thể tích khối tròn xoay đó là:
\(V = \pi \int\limits_1^2 {{{\left( {\frac{1}{x}} \right)}^2}dx} = \pi \int\limits_1^2 {{x^{ - 2}}dx} = \pi \frac{{{x^{ - 2 + 1}}}}{{ - 2 + 1}}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = - \pi {x^{ - 1}}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = \frac{{ - \pi }}{x}\left| {\begin{array}{*{20}{c}}2\\1\end{array}} \right. = \frac{{ - \pi }}{2} - \frac{{ - \pi }}{1} = \frac{\pi }{2}\).
Đúng 0
Bình luận (0)
