Đường cong ở Hình 29 là đồ thị của hàm số:
A. y = x3 + x2 + 2x + 2.
B. y = – x3 – 4x2 – x + 2.
C. y = x3 + 3x2 – 4x + 2.
D. y = x3 + 3x2 + 4x + 2.
Đường cong ở Hình 29 là đồ thị của hàm số:
A. y = x3 + x2 + 2x + 2.
B. y = – x3 – 4x2 – x + 2.
C. y = x3 + 3x2 – 4x + 2.
D. y = x3 + 3x2 + 4x + 2.
Đường cong nào sau đây là đồ thị của hàm số \(\dfrac{1-x}{x+1}\)?
Thảo luận (1)Hướng dẫn giải
Đường cong ở Hình 30 là đồ thị của hàm số:
A. \(y=\dfrac{x^2+2x+2}{-x-1}.\)
B. \(y=\dfrac{x^2+2x+2}{-x-1}.\)
C. \(y=\dfrac{x^2-2x+2}{x-1}\)
D. \(y=\dfrac{x^2-2x+2}{x+1}\)
Thảo luận (1)Hướng dẫn giảiVì đồ thị hàm số đi qua (0:2)
=> Loại B,D
Vì hàm số có tcd là x=-1
=>\(\mathop {\lim }\limits_{\;x \to - 1} f\left( x \right) = \infty \)
Xét a, \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} + 2x + 2}}{{ - x - 1}} = \mathop {\lim }\limits_{ - x - 1} ( - x - 1 - \frac{1}{{x + 1}}) = - \infty \)
=> Chọn A
(Trả lời bởi datcoder)
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) y = 2x3 – 3x2 + 1; b) y = – x3 + 3x2 – 1;
c) y = (x – 2)3 + 4; d) y = – x3 + 3x2 – 3x + 2;
e) y = \(\dfrac{1}{3}\)x3 + x2 + 2x + 1; g) y = – x3 – 3x.
Thảo luận (1)Hướng dẫn giảia,
\(y = 2{x^3} - 3{x^2} + 1\)
Tập xác định: D = R
\(y' = 6{x^2}\) - 6x; y' = 0 \( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 0}\end{array}} \right.\)
Bảng biến thiên
Đồ thị hàm số
b,
\(y = - {x^3} + 3{x^2} - 1\)
Tập xác định: D = R
\(y' = - 3{x^2} + 6x\); y' = 0 \( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)
Bảng biến thiên
Đồ thị hàm số
c,
\(y = {\left( {x - 2} \right)^3} + 4\)
Tập xác định: D = R
\(y' = 3{\left( {x - 2} \right)^2} \), y’=0 \( = > {\left( {x\;-\;2} \right)^2} = 0 = > x - 2 = 0 = > x = 2\)
Bảng biến thiên
Đồ thị hàm số
d,
\(y = - {x^3} + 3{x^2} - 3x + 2\)
Tập xác định: D = R
\(y' = - 3{x^2} + 6x - 3,\;y' = 0 = > x = 1\)
Bảng biến thiên:
Đồ thị hàm số
e,\(y = \frac{1}{3}{x^3} + {x^2} + 2x + 1 = > y' = {x^2} + 2x + 2 > 0, \forall x \in D\)
Tập xác định: D = R
Đồ thị hàm số
g,\(y = - {x^3} - 3x = > y' = - 3{x^2} - 3 < 0, \forall x \in D\)
Tập xác định: D = R
Bảng biến thiên
Đồ thị hàm số
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 0}\end{array}} \right.\)
(Trả lời bởi datcoder)
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(\dfrac{x-1}{x+1};\) b) \(\dfrac{-2x}{x+1}\);
c) \(y=\dfrac{x^2-3x+6}{x-1};\) d) \(y=\dfrac{-x^2+2x-4}{x-2};\)
e) \(y=\dfrac{2x^2+3x-5}{x+2};\) g) \(y=\dfrac{x^2-2x-3}{-x+2}\).
Thảo luận (1)Hướng dẫn giảia) \(y = \frac{{x - 1}}{{x + 1}}\)
1) TXĐ: \(x \in \mathbb{R}\left\{ { - 1} \right\}\)
2) Sự biến thiên
\(y' = \frac{2}{{{{\left( {x + 1} \right)}^2}}} > 0\;\) với mọi \(x \ne - 1\)
Bảng biến thiên:
Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\)
Hàm số không có cực trị
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0; - 1} \right)\)
Giao điểm đồ thị với trục hoành: \(\left( {1;0} \right)\)
Đồ thị đi qua các điểm: \(\left( {0; - 1} \right)\), \(\left( {1;0} \right)\)
b) \(y = \frac{{ - 2x}}{{x + 1}}\)
1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ { - 1} \right\}\)
2) Sự biến thiên
với mọi \(x \ne - 1\)
Bảng biến thiên:
Hàm số nghịch biến trên khoảng \(\left( { - \infty , - 1} \right) \cup \left( { - 1,\infty } \right)\)
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0;0} \right)\)
Giao điểm đồ thị với trục hoành: \(\left( {0;0} \right)\)
c) \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)
1) TXĐ: \(x \in \mathbb{R}\backslash \left\{ 1 \right\}\)
2) Sự biến thiên
Ta có \(y = \frac{{{x^2} - 3x + 6}}{{x - 1}}\)\( = x - 2 + \frac{4}{{x - 1}}\)
\(y' = 1 - \frac{4}{{{{(x - 1)}^2}}}\)\( = \frac{{{x^2} - 2x - 3}}{{{{(x - 1)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 3\\x = - 1\end{array} \right.\)
Bảng biến thiên
Hàm số đồng biến trên khoảng \(\left( { - \infty , - 1} \right),\left( {3, + \infty } \right)\). Nghịch biến trên khoảng \(\left( { - 1,1} \right),\left( {1,3} \right)\)
3) Đồ thị
Giao điểm đồ thị với trục tung: \(\left( {0; - 6} \right)\)
d) \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)
Hàm số trên xác định trên R\{2}
Ta có \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)\( = - x - \frac{4}{{x - 2}}\)
\(y' = - 1 + \frac{4}{{{{(x - 2)}^2}}}\)\( = \frac{{ - {x^2} + 4x}}{{{{(x - 2)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\)
Từ đó ta có bảng biến thiên là
Từ bảng biến thiên ta thấy
Hàm số đồng biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \((0;2)\) và \((2;4)\)
Hàm số nghịch biến \(y = \frac{{ - {x^2} + 2x - 4}}{{x - 2}}\)trên các khoảng \(( - \infty ;0)\) và \((4; + \infty )\)
Ta có đồ thị hàm số là
e) \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\)
Hàm số xác định trên R\{-2}
Ta có \(y = \frac{{2{x^2} + 3x - 5}}{{x + 2}}\) \( = 2x - \frac{{x + 5}}{{x + 2}}\)
\(y' = 2 + \frac{3}{{{{(x + 2)}^2}}}\)
Vì \(y' > 0\)với \(x \in R/\left\{ { - 2} \right\}\)
Nên hàm số luôn đồng biến với \(x \in R/\left\{ { - 2} \right\}\)
Ta có đồ thị hàm số là
g) \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\)
Hàm số xác định trên R/{2}
Ta có : \(y = \frac{{{x^2} - 2x - 3}}{{ - x + 2}}\) \( = - x + \frac{3}{{x - 2}}\)
\(y' = - 1 - \frac{3}{{{{(x - 2)}^2}}}\)
Vì \(y' < 0\)với \(x \in R/\left\{ 2 \right\}\)
Nên hàm số luôn nghịch biến với \(x \in R/\left\{ 2 \right\}\)
Ta có đồ thị hàm số là
(Trả lời bởi datcoder)
Một tàu đổ bộ tiếp cận Mặt Trăng theo cách tiếp cận thẳng đứng và đốt cháy các tên lửa hãm ở độ cao 250 km so với bề mặt của Mặt Trăng.
Trong khoảng 70 giây đầu tiên kể từ khi đốt cháy các tên lửa hãm, độ cao h của con tàu so với bề mặt của Mặt Trăng được tính (gần đúng) bởi hàm
h(t) = – 0,01t3 + 1,1t2 – 30t + 250,
trong đó t là thời gian tính bằng giây và h là độ cao tính bằng kilômét (Nguồn: A. Bigalke et al., Mathematik, Grundkurs ma-1, Cornelsen 2016).
a) Tìm thời điểm t (0 ≤ t ≤ 70) sao cho con tàu đạt khoảng cách nhỏ nhất so với bề mặt của Mặt Trăng. Khoảng cách nhỏ nhất này là bao nhiêu?
b) Vẽ đồ thị của hàm số y = h(t) với 0 ≤ t ≤ 70 (đơn vị trên trục hoành là 10 giây, đơn vị trên trục tung là 50 km).
c) Gọi v(t) là vận tốc tức thời của con tàu ở thời điểm t (giây) kể từ khi đốt cháy các tên lửa hãm với 0 ≤ t ≤ 70. Xác định hàm số v(t).
d) Vận tốc tức thời của con tàu lúc bắt đầu hãm phanh là bao nhiêu? Tại thời điểm t = 25 (giây) là bao nhiêu?
e) Tại thời điểm t = 25 (giây), vận tốc tức thời của con tàu vẫn giảm hay đang tăng trở lại?
Xét phản ứng hóa học tạo ra chất C từ hai chất A và B:
A + B → C.
Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: \(\left[C\right]=\dfrac{a^2Kt}{aKt+1}\) (mol/l), trong đó K là hằng số dương (Nguồn: Đỗ Đức Thái (Chủ biên) và các đồng tác giả, Giáo trình Phép tính vi tích phân hàm một biến, NXB Đại học Sư phạm, 2023).
a) Tìm tốc độ phản ứng ở thời điểm t > 0.
b) Chứng minh nếu x = [C] thì x'(t) = K(a – x)2.
c) Nêu hiện tượng xảy ra với nồng độ các chất khi \(t\rightarrow+\infty\).
d) Nêu hiện tượng xảy ra với tốc độ phản ứng khi \(t\rightarrow+\infty\).