Bài 2. Đường thẳng vuông góc với mặt phẳng

Giải mục 5 trang 85 (SGK Cánh Diều)

Hướng dẫn giải

a: Có 1 đường duy nhất

b: Đường thẳng d cắt (P) tại 1 giao điểm

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 5 trang 85 (SGK Cánh Diều)

Giải mục 6 trang 87 (SGK Cánh Diều)

Hướng dẫn giải

a: Gọi \(A,B\in a\)

A',B' lần lượt là hình chiếu của A,B trên (P)

\(d\subset\left(P\right)\) nên \(AB\subset\left(P\right)\)

=>d vuông góc A'A

Do đó: nếu d vuông góc a' thì d vuông góc mp(a,a')

=>d vuông góc a

b: Nếu d vuông góc a thì d vuông góc mp(a,a')

=>d vuông góc a'

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 6 trang 87 (SGK Cánh Diều)

Hướng dẫn giải

Vì ABCD là hình chữ nhật nên \(BC \bot AB\).

Vì \(SA \bot (ABCD) \Rightarrow SA \bot AB,\,SA \bot CD\)

+ Ta có:

\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB \cap SA = A\\AB,\,SA \subset (SAB)\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot SB\)

Xét \(\Delta SBC\) có \(BC \bot SB \Rightarrow \)Tam giác SBC vuông tại B.

+ Ta có:

\(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\AD \cap SA = A\\AD,\,SA \subset (SAD)\end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot SD\)

Xét \(\Delta SCD\) có \(CD \bot SD \Rightarrow \)Tam giác SCD vuông tại D.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 trang 88 (SGK Cánh Diều)

Hướng dẫn giải

Gợi lên 2 tính chất:

- Hai đường thẳng vuông góc: Nếu 2 đường thẳng phân biệt cùng vuông góc với 1 mặt phẳng thì chúng song song với nhau

- Hai đường thẳng song song: Một đường thẳng vuông góc với một mặt phẳng thì sẽ vuông góc với tất cả các đường thẳng chứa trong mp đó

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 2 trang 88 (SGK Cánh Diều)

Hướng dẫn giải

a)      

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ A là hình chiếu của A trên mặt phẳng (ABC)

\( \Rightarrow \) HA là hình chiếu của SA trên mặt phẳng (ABC)

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ B là hình chiếu của B trên mặt phẳng (ABC)

\( \Rightarrow \) HB là hình chiếu của SB trên mặt phẳng (ABC)

+ H là hình chiếu của S trên mặt phẳng (ABC)

+ C là hình chiếu của C trên mặt phẳng (ABC)

\( \Rightarrow \) HC là hình chiếu của SC trên mặt phẳng (ABC)

b, Do H là hình chiếu của S trên mặt phẳng (ABC) \( \Rightarrow SH \bot (ABC)\).

Mà  \(AB,AC,BC \subset (ABC) \Rightarrow SH \bot AB,SH \bot AC,SH \bot BC\).

Ta có: \(\left\{ \begin{array}{l}SA \bot BC\\SH \bot BC\\SA \cap SH = S\\SA,SH \subset (SAH)\end{array} \right. \Rightarrow BC \bot (SAH) \Rightarrow BC \bot AH\,(1)\)

Tương tự \(\left\{ \begin{array}{l}SC \bot AB\\SH \bot AB\\SC \cap SH = S\\SC,SH \subset (SCH)\end{array} \right. \Rightarrow AB \bot (SCH) \Rightarrow AB \bot CH\,(2)\)

TỪ (1) và (2) \( \Rightarrow \) H là trực tâm của tam giác ABC.

Vì \(\left\{ \begin{array}{l}AB \bot (SCH)\\SC \subset (SCH)\end{array} \right. \Rightarrow AB \bot SC\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 trang 88 (SGK Cánh Diều)

Hướng dẫn giải

a)     Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)

Có H là trực tâm của tam giác BCD \( \Rightarrow BH \bot CD\left( 2 \right)\)

Tử (1) và (2) \( \Rightarrow CD \bot \left( {ABH} \right)\)

b)    Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\left( 1 \right)\)

Có K là trực tâm của tam giác BCD \( \Rightarrow AK \bot CD\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow CD \bot \left( {ABK} \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 4 trang 88 (SGK Cánh Diều)

Hướng dẫn giải

a)     Vì \(AB \bot \left( {BCD} \right) \Rightarrow AB \bot CD\)

Mà \(CD \bot BC\)\( \Rightarrow CD \bot \left( {ABC} \right)\)

Lại có \(BM \in \left( {ABC} \right)\)\( \Rightarrow CD \bot BM\)

b)    Ta có \(\left. \begin{array}{l}BM \bot CD\\BM \bot AC\end{array} \right\} \Rightarrow BM \bot \left( {ACD} \right)\)

Mà \(MN \in \left( {ACD} \right) \Rightarrow BM \bot MN\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 trang 88 (SGK Cánh Diều)

Hướng dẫn giải

a)     Ta có: \(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right)\)

Mà \(BC \in \left( {OBC} \right) \Rightarrow OA \bot BC\)

b)    Ta có \(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right)\)

Mà \(CA \in \left( {OAC} \right) \Rightarrow CA \bot OB\)

c)     Ta có \(\left. \begin{array}{l}OC \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OC \bot \left( {OAB} \right)\)

Mà \(AB \in \left( {OAB} \right) \Rightarrow AB \bot OC\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)