Sử dụng ý nghĩa hình học của tích phân, tính:
a) \(\int\limits^2_1\left(2x+1\right)dx;\) b) \(\int\limits^3_{-3}\left(\sqrt{9-x^2}\right)dx.\)
Sử dụng ý nghĩa hình học của tích phân, tính:
a) \(\int\limits^2_1\left(2x+1\right)dx;\) b) \(\int\limits^3_{-3}\left(\sqrt{9-x^2}\right)dx.\)
Cho $\int_0^3 f(x) d x=5$ và $\int_0^3 g(x) d x=2$. Tính:
a) $\int_0^3[f(x)+g(x)] d x$;
b) $\int_0^3[f(x)-g(x)] d x$;
c) $\int_0^3 3 f(x) d x$
d) $\int_0^3[2 f(x)-3 g(x)] d x$.
Thảo luận (1)Hướng dẫn giảia) \(\int\limits_0^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_0^3 {f\left( x \right)dx} + \int\limits_0^3 {g\left( x \right)dx} = 5 + 2 = 7\)
b) \(\int\limits_0^3 {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_0^3 {f\left( x \right)dx} - \int\limits_0^3 {g\left( x \right)dx} = 5 - 2 = 3\)
c) \(\int\limits_0^3 {3f\left( x \right)dx} = 3\int\limits_0^3 {f\left( x \right)dx} = 3.5 = 15\)
d) \(\int\limits_0^3 {\left[ {2f\left( x \right) - 3g\left( x \right)} \right]dx} = 2\int\limits_0^3 {f\left( x \right)dx} - 3\int\limits_0^3 {g\left( x \right)dx} = 2.5 - 3.2 = 4\)
(Trả lời bởi datcoder)
Tính:
a) \(\int\limits^3_0\left(3x-1\right)^2dx;\) b) \(\int\limits^{\dfrac{\pi}{2}}_0\left(1+\sin x\right)dx;\)
c) \(\int\limits^1_0\left(e^{2x}+3x^2\right)dx;\) d) \(\int\limits^2_{-1}\left|2x+1\right|dx.\)
Thảo luận (1)Hướng dẫn giảia) \(\int\limits_0^3 {{{\left( {3x - 1} \right)}^2}dx} = \int\limits_0^3 {\left( {9{x^2} - 6x + 1} \right)dx} = 9\int\limits_0^3 {{x^2}dx} - 6\int\limits_0^3 {xdx} + \int\limits_0^3 {dx} \)
\( = 3{x^3}\left| \begin{array}{l}3\\0\end{array} \right. - 3{x^2}\left| \begin{array}{l}3\\0\end{array} \right. + x\left| \begin{array}{l}3\\0\end{array} \right. = 81 - 27 + 3 = 57\)
b) \(\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \sin x} \right)dx} = \int\limits_0^{\frac{\pi }{2}} {dx} + \int\limits_0^{\frac{\pi }{2}} {\sin xdx} = x\left| \begin{array}{l}\frac{\pi }{2}\\0\end{array} \right. - \cos x\left| \begin{array}{l}\frac{\pi }{2}\\0\end{array} \right. = \frac{\pi }{2} + 1\)
c) \(\int\limits_0^1 {\left( {{e^{2x}} + 3{x^2}} \right)dx} = \int\limits_0^1 {{{\left( {{e^2}} \right)}^x}dx} + 3\int\limits_0^1 {{x^2}dx} = \frac{{{e^{2x}}}}{{\ln {e^2}}}\left| \begin{array}{l}1\\0\end{array} \right. + {x^3}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{{{e^2}}}{2} - \frac{1}{2} + 1 = \frac{{{e^2}}}{2} + \frac{1}{2}\)
d) \(\int\limits_{ - 1}^2 {\left| {2x + 1} \right|dx} = \int\limits_{ - 1}^{\frac{{ - 1}}{2}} {\left| {2x + 1} \right|dx} + \int\limits_{\frac{{ - 1}}{2}}^2 {\left| {2x + 1} \right|dx} = - \int\limits_{ - 1}^{\frac{{ - 1}}{2}} {\left( {2x + 1} \right)dx} + \int\limits_{\frac{{ - 1}}{2}}^2 {\left( {2x + 1} \right)dx} \)
\( = - \left( {{x^2} + x} \right)\left| \begin{array}{l}\frac{{ - 1}}{2}\\ - 1\end{array} \right. + \left( {{x^2} + x} \right)\left| \begin{array}{l}2\\\frac{{ - 1}}{2}\end{array} \right. = - \left[ {{{\left( {\frac{{ - 1}}{2}} \right)}^2} - \frac{1}{2} - {{\left( { - 1} \right)}^2} + 1} \right] + \left[ {{2^2} + 2 - {{\left( {\frac{{ - 1}}{2}} \right)}^2} + \frac{1}{2}} \right]\)
\( = \frac{1}{4} + \frac{{25}}{4} = \frac{{13}}{2}\)
(Trả lời bởi datcoder)
Một vật chuyển động dọc theo một đường thẳng sao cho vận tốc của nó tại thời điểm t (giây) là v(t) = t2 – t – 6 (m/s).
a) Tìm độ dịch chuyển của vật trong khoảng thời gian 1 ≤ t ≤ 4, tức là tính \(\int\limits^4_1v\left(t\right)dt\).
b) Tìm tổng quãng đường vật đi được trong khoảng thời gian 1 ≤ t ≤ 4, tức là tính \(\int\limits^4_1\left|v\left(t\right)\right|dt\).
Thảo luận (1)Hướng dẫn giảia) Độ dịch chuyển của vật trong khoảng thời gian \(1 \le t \le 4\) là:
\(\int\limits_1^4 {v\left( t \right)dt} = \int\limits_1^4 {\left( {{t^2} - t - 6} \right)dt} = \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\1\end{array} \right. = \left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right) = \frac{{ - 9}}{2}\)
Vậy vật dịch chuyển \(\frac{9}{2}m\) trong khoảng thời gian \(1 \le t \le 4\).
b) Tổng quãng đường vật đi được trong khoảng thời gian này là:
\(\int\limits_1^4 {\left| {v\left( t \right)} \right|dt} = \int\limits_1^4 {\left| {{t^2} - t - 6} \right|dt} = \int\limits_1^3 {\left| {{t^2} - t - 6} \right|dt} + \int\limits_3^4 {\left| {{t^2} - t - 6} \right|dt} = - \int\limits_1^3 {\left( {{t^2} - t - 6} \right)dt} + \int\limits_3^4 {\left( {{t^2} - t - 6} \right)dt} \)
\( = - \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}3\\1\end{array} \right. + \left( {\frac{{{t^3}}}{3} - \frac{{{t^2}}}{2} - 6t} \right)\left| \begin{array}{l}4\\3\end{array} \right.\)
\( = - \left[ {\left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right) - \left( {\frac{{{1^3}}}{3} - \frac{{{1^2}}}{2} - 6.1} \right)} \right] + \left[ {\left( {\frac{{{4^3}}}{3} - \frac{{{4^2}}}{2} - 6.4} \right) - \left( {\frac{{{3^3}}}{3} - \frac{{{3^2}}}{2} - 6.3} \right)} \right] = \frac{{22}}{3} + \frac{{17}}{6} = \frac{{61}}{6}\)
(Trả lời bởi datcoder)
Giả sử lợi nhuận biên (tính bằng triệu đồng) của một sản phẩm được mô hình hóa bằng công thức
P'(x) = −0,0005x + 12,2.
Ở đây P(x) là lợi nhuận (tính bằng triệu đồng) khi bán được x đơn vị sản phẩm.
a) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 101 sản phẩm.
b) Tìm sự thay đổi của lợi nhuận khi doanh số tăng từ 100 lên 110 sản phẩm.
Thảo luận (1)Hướng dẫn giảia) Sự thay đổi lợi nhuận khi tăng doanh số tăng từ 100 lên 101 đơn vị sản phẩm là:
\(\int\limits_{100}^{101} {P'\left( x \right)dx} = \int\limits_{100}^{101} {\left( { - 0,0005x + 12,2} \right)dx} = \left( { - 0,00025{x^2} + 12,2x} \right)\left| \begin{array}{l}101\\100\end{array} \right.\)
\( = - 0,{00025.101^2} + 12,2.101 + 0,{00025.100^2} - 12,2.100 = 12,14975\) (triệu đồng)
b) Sự thay đổi lợi nhuận khi tăng doanh số tăng từ 100 lên 110 đơn vị sản phẩm là:
\(\int\limits_{100}^{110} {P'\left( x \right)dx} = \int\limits_{100}^{110} {\left( { - 0,0005x + 12,2} \right)dx} = \left( { - 0,00025{x^2} + 12,2x} \right)\left| \begin{array}{l}110\\100\end{array} \right.\)
\( = - 0,{00025.110^2} + 12,2.110 + 0,{00025.100^2} - 12,2.100 = 121,475\) (triệu đồng)
(Trả lời bởi datcoder)
Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.
Thảo luận (1)Hướng dẫn giảiVận tốc trung bình của động mạch là:
\(\frac{1}{{R - 0}}\int\limits_0^R {v\left( r \right)dr} = \frac{1}{R}\int\limits_0^R {k\left( {{R^2} - {r^2}} \right)dr} = \frac{1}{R}\int\limits_0^R {\left( {k{R^2} - k{r^2}} \right)dr} = \frac{1}{R}\left( {k{R^2}r - \frac{{k{r^3}}}{3}} \right)\left| \begin{array}{l}R\\0\end{array} \right.\)
\( = \frac{1}{R}\left( {k.{R^3} - \frac{{k{R^3}}}{3}} \right) = \frac{{2k{R^2}}}{3}\)
Do đó, vận tốc trung bình của động mạch là: \({v_{tb}} = \frac{{2k{R^2}}}{3}\).
Vì \(0 \le r \le R\) nên vận tốc của động mạch đạt giá trị lớn nhất là \({v_{\max }} = k{R^2}\) khi \(r = 0\).
Do đó, \({v_{\max }} = \frac{3}{2}{v_{tb}}\).
(Trả lời bởi datcoder)