Bài 12. Tích phân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Giả sử vận tốc v của dòng máu ở khoảng cách r từ tâm của động mạch bán kính R không đổi, có thể được mô hình hóa bởi công thức v = k(R2 – r2), trong đó k là một hằng số. Tìm vận tốc trung bình (đối với r) của động mạch trong khoảng 0 ≤ r ≤ R. So sánh vận tốc trung bình với vận tốc lớn nhất.

datcoder
27 tháng 10 lúc 17:40

Vận tốc trung bình của động mạch là:

\(\frac{1}{{R - 0}}\int\limits_0^R {v\left( r \right)dr}  = \frac{1}{R}\int\limits_0^R {k\left( {{R^2} - {r^2}} \right)dr}  = \frac{1}{R}\int\limits_0^R {\left( {k{R^2} - k{r^2}} \right)dr}  = \frac{1}{R}\left( {k{R^2}r - \frac{{k{r^3}}}{3}} \right)\left| \begin{array}{l}R\\0\end{array} \right.\)

\( = \frac{1}{R}\left( {k.{R^3} - \frac{{k{R^3}}}{3}} \right) = \frac{{2k{R^2}}}{3}\)

Do đó, vận tốc trung bình của động mạch là: \({v_{tb}} = \frac{{2k{R^2}}}{3}\).

Vì \(0 \le r \le R\) nên vận tốc của động mạch đạt giá trị lớn nhất là \({v_{\max }} = k{R^2}\) khi \(r = 0\).

Do đó, \({v_{\max }} = \frac{3}{2}{v_{tb}}\).