Bạn Thủy gieo một con xúc xắc cân đối và đồng chất. Nếu biết rằng xuất hiện mặt chẵn chấm thì xác suất xuất hiện mặt 6 chấm là bao nhiêu?
Bạn Thủy gieo một con xúc xắc cân đối và đồng chất. Nếu biết rằng xuất hiện mặt chẵn chấm thì xác suất xuất hiện mặt 6 chấm là bao nhiêu?
Hộp thứ nhất chứa 2 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 2 viên bi xanh và 3 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Bạn Thanh lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Gọi A là biến cố “Viên bi lấy ra lần thứ nhất là bi xanh”;
B là biến cố “Viên bi lấy ra lần thứ hai là bi đỏ”.
a) Biết rằng biến cố A xảy ra, tính xác suất của biến cố B.
b) Biết rằng biến cố A không xảy ra, tính xác suất của biến cố B.
Thảo luận (1)Hướng dẫn giảia) Khi biến cố \(A\) xảy ra, tức là viên bi lấy ra lần thứ nhất là viên bi màu xanh. Bỏ viên bi màu xanh đó vào túi thứ hai, lúc này trong túi thứ 2 ta có 3 viên bi xanh và 3 viên bi đỏ.
Khi đó, xác suất để lấy ra được viên bi đỏ ở túi thứ hai (cũng là xác suất của biến cố \(B\)) là \(P\left( B \right) = \frac{3}{6} = \frac{1}{2}\).
b) Khi biến cố \(A\) không xảy ra, tức là viên bi lấy ra lần thứ nhất là viên bi màu đỏ. Bỏ viên bi màu đỏ đó vào túi thứ hai, lúc này trong túi thứ hai ta có 2 viên bi xanh và 4 viên bi đỏ. Khi đó, xác suất để lấy ra được viên bi đỏ ở túi thứ hai (cũng là xác suất của biến cố \(B\)) là \(P\left( B \right) = \frac{4}{6} = \frac{2}{3}\).
(Trả lời bởi datcoder)
Xét phép thử lấy thẻ ở Ví dụ 1. Gọi D là biến cố “Thẻ lấy ra lần thứ hai ghi số lớn hơn 1”. Tính P(D|A) và P(D|B).
Thảo luận (1)Hướng dẫn giảiTính \(P\left( {D|A} \right)\), tức là tính xác suất của biến cố
\(D\) với điều kiện \(A\). Khi biến cố \(A\) xảy ra thì kết quả của phép thử sẽ là \(\left( {1;2} \right)\) hoặc \(\left( {1;3} \right)\). Cả hai kết quả này đều có lợi cho biến cố \(D\). Suy ra \(P\left( {D|A} \right) = 1\).
Tính \(P\left( {D|B} \right)\), tức là tính xác suất của biến cố \(D\) với điều kiện \(B\). Khi biến cố \(B\) xảy ra thì kết quả của phép thử là \(\left( {2;1} \right)\) hoặc \(\left( {2;3} \right)\). Trong hai kết quả trên, chỉ có kết quả \(\left( {2;3} \right)\) là có lợi cho biến cố \(D\). Suy ra \(P\left( {D|B} \right) = \frac{1}{2}\).
(Trả lời bởi datcoder)
Xét phép thử ở Ví dụ 2. Tính xác suất thành viên được chọn không biết chơi cờ tướng biết rằng thành viên đó biết chơi cờ vua.
Thảo luận (1)Hướng dẫn giảiSố thành viên biết chơi cả hai môn cờ tướng và cờ vua là: \(25 + 20 - 35 = 10\)(người)
Gọi \(A\) là biến cố “Thành viên được chọn không biết chơi cờ tướng”, \(B\) là biến cố “Thành viên đó biết chơi cờ vua”. Ta cần tính \(P\left( {A|B} \right)\).
Khi biến cố \(B\) xảy ra, ta thấy có 25 kết quả thuận lợi cho \(B\) (tức là 25 thành viên biết chơi cờ vua). Trong số đó, có 15 kết quả thuận lợi cho biến cố \(A\) (do có 10 thành viên biết chơi cả 2 môn cờ, nên sẽ có \(25 - 10 = 15\) người không biết chơi cờ tướng).
Vậy \(P\left( {A|B} \right) = \frac{{15}}{{25}} = \frac{3}{5}\).
(Trả lời bởi datcoder)
Tính xác suất có điều kiện ở hoạt động khởi động (trang 69).
Thảo luận (1)Hướng dẫn giảiGọi \(A\) là biến cố “Xuất hiện mặt chẵn chấm” và \(B\) là biến cố “Xuất hiện mặt 6 chấm”. Ta phải tìm \(P\left( {B|A} \right)\).
Khi biến cố \(A\) xuất hiện, các kết quả của phép thử sẽ là 2, 4, 6. Chỉ có duy nhất kết quả 6 là có lợi cho biến cố \(B\). Vậy \(P\left( {B|A} \right) = \frac{1}{3}\).
(Trả lời bởi datcoder)
Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”, B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8” và C là biến cố “Xuất hiện ít nhất một mặt có 6 chấm”.
a) Tính \(\dfrac{P\left(A\cap B\right)}{P\left(B\right)}\) và P(A|B).
b) Tính \(\dfrac{P\left(C\cap A\right)}{P\left(A\right)}\) và P(C|A).
Thảo luận (1)Hướng dẫn giảia) Ta dễ dàng thấy các kết quả \(\left( {3;5} \right)\); \(\left( {4;4} \right)\); \(\left( {5;3} \right)\) là có lợi cho biến cố \(B\), suy ra \(P\left( B \right) = \frac{3}{{36}} = \frac{1}{{12}}\).
Biến cố \(A \cap B\) là biến cố “Xuất hiện hai mặt cùng số chấm và tổng số chấm của hai mặt xuất hiện là 8”. Dễ dàng thấy \(\left( {4;4} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {A \cap B} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{{12}}}} = \frac{1}{3}\).
Khi biến cố \(B\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(A\). Như vậy \(P\left( {A|B} \right) = \frac{1}{3}\).
b) Ta dễ dàng thấy các kết quả \(\left( {1;1} \right)\); \(\left( {2;2} \right)\); \(\left( {3;3} \right)\); \(\left( {4;4} \right)\); \(\left( {5;5} \right)\); \(\left( {6;6} \right)\) là các kết quả có lợi cho biến cố \(A\). Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\).
Biến cố \(C \cap A\) là biến cố “Xuất hiện hai mặt cùng số chấm và có ít nhất một mặt 6 chấm”. Dễ dàng thấy \(\left( {6;6} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {C \cap A} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).
Khi biến cố \(A\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(C\). Như vậy \(P\left( {C|A} \right) = \frac{1}{6}\).
(Trả lời bởi datcoder)
Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn trong nhóm đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.
Thảo luận (1)Hướng dẫn giảiGọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\).
Số cách chọn hai bạn bất kì là \(C_9^2 = 45\).
Số cách chọn hai bạn nam là \(C_5^2 = 10\).
Số cách chọn hai bạn nữ là \(C_4^2 = 6\).
Biến cố \(AB\) là biến cố “Hai bạn được chọn có cùng giới tính và có ít nhất một bạn nam”, đồng nghĩa với “Hai bạn được chọn là hai bạn nam”. Suy ra \(P\left( {AB} \right) = \frac{{10}}{{45}} = \frac{2}{9}\)
Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{45 - 6}}{{45}} = \frac{{13}}{{15}}\).
Như vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{9}}}{{\frac{{13}}{{15}}}} = \frac{{10}}{{39}}\).
(Trả lời bởi datcoder)
Kết quả khảo sát những bệnh nhân bị tai nạn xe máy về mối liên hệ giữa việc đội mũ bảo hiểm và khả năng bị chấn thương vùng đầu cho thấy:
- Tỉ lệ bệnh nhân bị chấn thương vùng đầu khi gặp tai nạn là 80%;
- Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách khi gặp tai nạn là 90%;
- Tỉ lệ bệnh nhân đội mũ bảo hiểm đúng cách và bị chấn thương vùng đầu là 18%.
Hỏi theo kết quả điều tra trên, việc đội mũ bảo hiểm đúng cách sẽ làm giảm khả năng bị chấn thương vùng đầu bao nhiêu lần?
Thảo luận (1)Hướng dẫn giảiGọi \(A\) là biến cố “Bệnh nhân bị chấn thương vùng đầu”, \(B\) là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách”.
Theo đề bài, ta có \(P\left( A \right) = 80\% = 0,8\); \(P\left( B \right) = 90\% = 0,9\).
Biến cố \[AB\] là biến cố “Bệnh nhân đội mũ bảo hiểm đúng cách bị chấn thương vùng đầu”. Theo đề bài, ta có \(P\left( {AB} \right) = 18\% = 0,18\).
Khi biến cố \(B\) xảy ra, tức là bệnh nhân đội mũ bảo hiểm đúng cách, ta cần tính xác suất để bệnh nhân bị chấn thương vùng đầu, tức là tính \(P\left( {A|B} \right)\).
Ta có \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,18}}{{0,9}} = 0,2\).
Như vậy, khi đội mũ bảo hiểm đúng cách thì tỉ lệ chấn thương vùng đầu sẽ là 0,2. Suy ra việc đội mũ bảo hiểm đúng cách sẽ làm giảm khả năng chấn thương vùng đầu đi \(\frac{{0,8}}{{0,2}} = 4\) lần.
(Trả lời bởi datcoder)
Bạn Việt chuẩn bị đi tham quan một hòn đảo trong hai ngày thứ Bảy và Chủ nhật. Ở hòn đảo đó, mỗi ngày chỉ có nắng hoặc mưa, nếu một ngày là nắng thì khả năng xảy ra mưa ở ngày tiếp theo là 20%, còn nếu một ngày là mưa thì khả năng ngày hôm sau vẫn mưa là 30%. Theo dự báo thời tiết, xác suất trời sẽ nắng vào thứ Bảy là 0,7.
Hãy tìm các giá trị thích hợp thay vào ở sở đồ hình cây sau:
Thảo luận (1)Hướng dẫn giảiVới ngày thứ 7, xác suất trời nắng là \(0,7\) nên xác suất trời mưa là \(1 - 0,7 = 0,3\).
Với ngày Chủ nhật:
- Trong trường hợp ngày thứ 7 trời nắng, xác suất trời mưa trong ngày Chủ nhật là \(0,2\). Suy ra xác suất trời nắng trong ngày Chủ nhật là \(1 - 0,2 = 0,8\).
- Trong trường hợp ngày thứ 7 trời mưa, xác suất trời mưa trong ngày Chủ nhật là \(0,3\). Suy ra xác suất trời nắng trong ngày Chủ nhật là \(1 - 0,3 = 0,7\).
Ta có sơ đồ sau:
(Trả lời bởi datcoder)
Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.
Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:
A: “Viên bi lấy ra từ hộp thứ nhất có màu xanh và viên bi lấy ra từ hộp thứ hai có màu đỏ”;
B: “Hai viên bi lấy ra có cùng màu”.
Thảo luận (1)Hướng dẫn giảiGọi \(M\) là biến cố “Viên bi lấy ra ở hộp thứ nhất có màu xanh” và \(N\) là biến cố “Viên bi lấy ra ở hộp thứ hai có màu đỏ”.
Xác suất để lấy ra được 1 viên bi xanh ở hộp thứ nhất là \(\frac{4}{{10}} = 0,4\).
Nếu ta lấy được viên bi xanh ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 6 viên bi xanh và 4 viên bi đỏ. Suy ra xác suất để lấy ra được 1 viên bi đỏ là \(\frac{4}{{10}} = 0,4\).
Nếu ta lấy được viên bi đỏ ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 5 viên bi xanh và 5 viên bi đỏ. Suy ra xác suất để lấy được 1 viên bi đỏ là \(\frac{5}{{10}} = 0,5\).
Ta có sơ đồ hình cây sau:
Dựa vào sơ đồ hình cây, ta có:
\(P\left( A \right) = P\left( {MN} \right) = 0,16.\)
\(P\left( B \right) = P\left( {M\bar N} \right) + P\left( {\bar MN} \right) = 0,24 + 0,3 = 0,54.\)
(Trả lời bởi datcoder)