Bài 1: Xác suất có điều kiện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn trong nhóm đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.

datcoder
28 tháng 10 lúc 5:29

Gọi \(A\) là biến cố “Hai bạn được chọn cùng giới tính” và \(B\) là biến cố “Hai bạn được chọn có ít nhất một bạn nam”. Ta cần phải tính \(P\left( {A|B} \right)\).

Số cách chọn hai bạn bất kì là \(C_9^2 = 45\).

Số cách chọn hai bạn nam là \(C_5^2 = 10\).

Số cách chọn hai bạn nữ là \(C_4^2 = 6\).

Biến cố \(AB\) là biến cố “Hai bạn được chọn có cùng giới tính và có ít nhất một bạn nam”, đồng nghĩa với “Hai bạn được chọn là hai bạn nam”. Suy ra \(P\left( {AB} \right) = \frac{{10}}{{45}} = \frac{2}{9}\)

Xác suất của biến cố \(B\) là \(P\left( B \right) = \frac{{45 - 6}}{{45}} = \frac{{13}}{{15}}\).

Như vậy \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{2}{9}}}{{\frac{{13}}{{15}}}} = \frac{{10}}{{39}}\).